780衍生物的合成、鉴定及其用于肿瘤靶向显影与治疗的实验研究
本文关键词:七甲川花菁类荧光小分子IR-780衍生物的合成、鉴定及其用于肿瘤靶向显影与治疗的实验研究,由笔耕文化传播整理发布。
七甲川花菁类荧光小分子IR-780衍生物的合成、鉴定及其用于肿瘤靶向显影与治疗的实验研究
详细信息 本馆镜像全文| 推荐本文 | 收藏本文 | 获取CNKI官网全文
摘要
研究背景与目的
尽管近几十年来人们对肿瘤的发生发展、转移等机制研究获得了重要进展,但由于仍缺乏灵敏的早期诊断、高特异性的靶向治疗以及实时有效的治疗监测,恶性肿瘤依然是目前严重威胁人类健康的重大疾病。肿瘤诊断治疗学(Tumor theranostics)是近些年提出来的一种肿瘤诊治新策略,其核心是将肿瘤治疗与实时显影有效结合,引导医生及时调整治疗方案,提高肿瘤病人的生存率和生活质量,为肿瘤个体化治疗提供一种新途径。由于制备同时具有肿瘤特异显影与靶向治疗作用的诊断治疗剂(Theranosticagents)是同步实现肿瘤诊断与治疗的重要途径,因此近两年就该类多功能抗肿瘤药物的研发已成为继分子靶向药物后的新研究热点。
目前对于诊断治疗剂的制备主要是通过两种策略:一是通过多步化学连接策略,将肿瘤靶向配体,如叶酸、多肽、抗体、核酸适配体等,分别与造影剂和抗肿瘤药物进行连接,从而同时实现肿瘤靶向显影与治疗作用;另一种是基于纳米材料的特殊性质,如利用尺寸依赖性的肿瘤组织增透与阻滞(EPR)效应,或利用其比表面积大,易于表面修饰各种靶向配体的优点,实现肿瘤药物的被动或主动靶向递送,同时利用纳米材料自身显影特性或进一步偶联显影剂,实现肿瘤的靶向显影与治疗监测。通过上述两种策略,目前已经获得了一些具有潜在应用价值的诊断治疗剂。例如,99mTc标记的阿霉素脂质体已经在进入I期临床试验,用于头颈鳞癌病人的治疗与监测。
然而,通过多步化学连接策略制备诊断治疗剂,可能会导致肿瘤配体靶向性的降低、显影剂成像能力的减弱,甚至药物抗肿瘤活性的丧失。此外,多步化学反应与分离纯化,还可能增加制备成本。特别是基于多功能纳米材料策略制备的诊断治疗剂,容易在内皮网状系统,例如肝脾等组织器官沉积,存在制备复杂、成本较高、潜在毒性等缺点,其应用也受到了很大限制。因此,优化诊断治疗剂的制备方法,或发展新的制备策略具有重要研究意义。
七甲川花菁类化合物是一类两端氮杂环中间含有多个次甲基长共轭链的花菁小分子,其具有摩尔吸光系数大、荧光量子产率高、稳定性好等优点,作为近红外荧光探针,已经被广泛应用于蛋白与核酸标记、基因测序、动物活体成像以及临床造影等。其中,代表性分子吲哚菁绿(ICG),已经在临床上广泛用于心脏、肝脏、眼底血管显影等。最近,我们课题组首次报道七甲川花菁荧光小分子IR-780,不需要化学连接肿瘤靶向配体,即在多种肿瘤细胞及其荷瘤模型上显示出良好的肿瘤靶向近红外荧光显影特性。进一步亚细胞器共定位实验结果表明, IR-780选择性蓄积在肿瘤细胞的线粒体内,其亲脂性离域型阳离子特性可能与其靶向肿瘤细胞线粒体密切相关。
由于IR-780具有良好的肿瘤选择性和近红外荧光显影特性,其也为肿瘤靶向诊断治疗药物的研究提供了新的思路和途径。基于课题组前期研究基础,本研究设想:(1)IR-780能否作为抗肿瘤药物的新型靶向载体,即通过化学连接策略,将抗肿瘤药物与IR-780进行共价连接,能否获得同时具有肿瘤靶向近红外显影与治疗作用的多功能化合物?(2)能否不经过化学连接抗肿瘤药物策略,直接通过对IR-780分子结构进行修饰,通过类似物的合成与筛选,获得自身同时具有肿瘤靶向显影与治疗作用的新型多功能诊断治疗剂,为肿瘤诊断治疗剂探索新的制备策略,为肿瘤个体化治疗提供新途径。
研究方法与结果
为了验证上述假设,获得同时具有肿瘤靶向、近红外荧光显影与治疗作用的多功能七甲川花菁分子,本论文分三个部分开展研究,主要结果如下:
1. IR-780羧基衍生物IR-808的合成及肿瘤近红外荧光显影特性的鉴定
1.1首先建立并优化了该类七甲川花菁类荧光小分子的合成方法,分别对合成该类七甲川花菁荧光小分子需要的三步反应,即Vilsmeier-Haack甲酰化、N-烷基化、缩合反应进行了改进。与以往文献中报道的常用合成方法相比,新建立的合成方法具有高效简洁、易大量制备等优点,为大量合成七甲川花菁荧光小分子、进一步化学修饰与药物连接奠定了基础。
1.2衍生合成了含有羧基官能团的IR-780衍生物—IR-808。鉴于IR-780缺乏可供直接化学连接抗肿瘤药物的活性反应官能团,需要对其进行结构修饰。本研究以6-溴己酸为原料,在合成IR-780的反应原料中引入羧基活性反应官能团,成功合成了含有两个羧基活性反应官能团的IR-780衍生物IR-808,并经过核磁共振氢谱(1H-NMR)、碳谱(13C-NMR)、高分辨质谱(HRMS)测试确证其结构。
1.3IR-808肿瘤靶向近红外荧光显影特性的鉴定。经光谱测试发现,IR-808的最大吸收和发射波长均在700-900nm近红外光谱区,具有近红外显影特性和良好的血清稳定性。体内实验表明,IR-808在rTDMCs、HeLa及LCC三种肿瘤细胞动物荷瘤模型中均显示出较好的肿瘤靶向性,提示其用于肿瘤特异性显影与诊断具有潜在应用前景。研究结果表明,IR-808不仅保留了良好的肿瘤靶向近红外荧光显影特性,同时还引入了两个可供化学连接反应的羧基官能团,为进一步化学修饰、药物连接,或放射性核素标记等奠定了基础;为获得同时具有肿瘤靶向显影与治疗作用的多功能分子,或经放射性核素等标记后用于深部组织肿瘤成像与诊断提供了可能性。
2. IR-808与抗癌药物的化学连接及其肿瘤显影和杀伤活性的实验研究
2.1成功地将IR-808与临床上常用的三种抗肿瘤药物进行了共价连接。利用IR-808具有羧基活性反应官能团的结构特性,选择临床上常用的分子量小、抗瘤谱广、活性强但选择性差的抗肿瘤药物,包括美法仑(Melphalan)、5-氟尿嘧啶(5-Fu)、阿霉素(DOX),分别与IR-808进行化学连接,获得与美法仑的连接物IR-808NM,与5-Fu的连接物IR-808-5Fu以及与阿霉素的共价连接物IR-808DOX。前两者获得纯品化合物,其结构经过1H NMR及HRMS测试所确定。后者经HRMS测试证明阿霉素与IR-808连接成功,但经反复优化反应与纯化条件,未获得纯品IR-808DOX。
2.2对新合成的共价连接产物进行肿瘤显影与杀伤活性的评价。通过上述化学连接策略,将IR-808成功与抗肿瘤药物连接并获得纯品的新共价连接物IR-808NM、IR-808-5Fu分别进行评价。结果表明,IR-808NM保留较好的肿瘤靶向特性,但IR-808-5Fu则失去了肿瘤靶向性。进一步应用MG63骨肉瘤细胞和SW480结肠癌细胞进行IR-808NM的抗肿瘤活性评价。结果显示,IR-808NM对两种细胞的生长抑制活性显著高于对照药美法仑。因此,通过化学连接策略,本研究成功获得了同时具有肿瘤靶向显影与治疗作用的新型多功能荧光小分子IR-808NM,验证了IR-780类似荧光小分子可作为抗肿瘤药物靶向载体的设想。
3. IR-808酯化衍生物的合成与抗肿瘤活性研究
鉴于我们的研究和相关文献报道IR-780和某些花菁类分子在较高剂量时可表现出一定的线粒体毒性,本研究提出,通过对IR-808进行酯化衍生化,以提高亲脂性,使其更容易跨过磷脂双层疏水性的线粒体膜,从而增大其在线粒体的浓度及毒性,可望获得不需要化学连接抗肿瘤药物,自身具有肿瘤靶向、近红外荧光显影与抗肿瘤活性的新型多功能小分子。
3.1IR-808酯化衍生物的高效合成及其近红外荧光显影特性的鉴定。为了提高IR-808亲脂性,显著增强其进入细胞及其线粒体的浓度与毒性,在IR-808的基础上,设计合成四个IR-808亲脂性强的酯化衍生物,包括丁酯(IR-808DB)、己酯(IR-808DH)、环己酯(IR-808DCH)、苯酚酯(IR-808DP),均为全新结构的化合物,未见文献报道。所建立的合成方法具有高效、易于大量制备等优点。四种IR-808酯类衍生物在甲醇、DMSO、血清中的最大吸收和发射波长均在近红外区域,具有比ICG更高的摩尔吸光系数和荧光量子产率。
3.2筛选获得IR-808DB具有显著抗肿瘤活性。应用人肺癌细胞(A549)研究发现,IR-808丁酯衍生物(IR-808DB)具有最显著的抗肿瘤活性(IC50值为0.43μM)。进一步在乳腺癌细胞(MDA231、MCF-7)、肝癌细胞(SMMC-7721, HepG2)、肺癌细胞(NCIH-460)等多种人类肿瘤细胞模型中评价其抗肿瘤活性,结果显示IR-808DB分子对多种肿瘤细胞均具有显著的生长抑制作用(IC50<6μM)。通过荷瘤动物体内研究,发现IR-808DB在rTDMCs、Lewis、HeLa以及A549等四种肿瘤模型上,均显示出较强的抗肿瘤活性。以20mg/kg临床药物环磷酰胺(CTX)为阳性对照,发现5mg/kg IR-808DB可以明显抑制肿瘤的生长。治疗过程中,荷瘤动物的重量和生理状态未见明显异常,主要脏器的组织切片未见明显病理改变。此外,通过荷瘤动物体内研究,比较IR-808DB和新合成的共价连接物IR-808NM的抗肿瘤活性,还发现IR-808DB的抗肿瘤活性显著高于IR-808NM。
3.3IR-808DB具有良好的肿瘤靶向显影特性。近红外荧光活体成像显示,IR-808DB在大鼠rTDMCs荷瘤模型上显示出肿瘤靶向特性;离体脏器和肿瘤组织的近红外荧光成像进一步证实其在肿瘤组织的选择性蓄积。研究还表明,在荷瘤第4天肉眼未见明显肿瘤包块形成时,荷瘤部位即可显示出近红外荧光显影;当肉眼可见小于0.5cm的肿瘤包块形成时,荷瘤部位即具有显著的近红外荧光显影特性,提示IR-808DB在肿瘤早期识别与诊断中可能具有研究价值。
结论与创新
本研究首先建立并优化了IR-780多种衍生物的化学合成方法,制备了含有羧基官能团的IR-808,证明其具有良好的肿瘤靶向近红外荧光显影特性,为连接抗肿瘤药物或放射性核素等显影剂,制备可用于深部组织肿瘤成像和具有肿瘤治疗作用的多功能分子奠定了基础。进而,利用IR-808具有羧基活性反应官能团的结构特性,成功地与三种抗肿瘤药物进行共价连接,筛选获得了同时具有肿瘤靶向显影与杀伤作用的衍生物IR-808NM,验证了IR-780类似荧光小分子可作为抗肿瘤药物靶向载体的设想。最后,通过对IR-808进行酯化修饰,提高其亲脂性,从而增强其线粒体毒性,制备获得了不需要化学连接抗肿瘤药物,自身具有肿瘤靶向、近红外荧光显影与抗肿瘤活性的新型化合物IR-808DB,为进一步研发新型的肿瘤个体化诊断治疗药物提供了新的策略和途径。目前,IR-808DB已获得国家发明专利授权,其抗肿瘤机制与进一步安全性评价等临床前研究正在进行中。
Background and Objectives:
Despite recent research involving cancer development and metastasis has gainedsignificant progress, malignant tumor still remains one of the most deadly diseases in theworld, due to the inefficient early diagnosis, poor specificity of drugs resulting in severeadverse effects, and lack of sensitive and real-time modalities to monitor therapeuticresponse. Tuomr theranostics, a fusion of therapeutics and diagnostics for optimizingefficacy and safety in cancer treatment, has been considered as a significant alternativenessto overcome these challenges. This integration can monitor therapeutic efficacy followingtreatments which can expedite clinician’s individualized therapeutic decisions. Becausetheranostic agents are of importance to achieve the simultaneous multifunctionality oftumor targeting, imaging and therapy, their preparation has received a great deal of researchinterest in recent years.
Currently, there are two main strategies explored for the obtainment of suchmultifunctional theranostic agents. One approach is through the multi-step chemicalconjugation of anticancer drugs and contrast agents with various cancer-targeted ligands,such as small molecules, antibodies, peptides, aptamers, etc. With the rapid development onadvanced multifunctional nanomaterials in nanomedicine, the other approach fordevelopment of cancer theranostic agents is based on nanoplatforms. They achievesimultaneous cancer specific detection and therapeutics by specifically delivering a highlypotent cytotoxic agent toward tumors either through the EPR effect of the tumormicrovasculature or through the conjugation of target ligands which can specifically bind tobiomakers highly associated with cancer cells. In many cases, advanced nanomaterialsendowed with imaging capability have been engineered to deliver and release drugsselectively toward tumor tissues. With the two strategies referred abrove, some cancer targeted therapeutic drugs are approved for clinical use or clinical trial. For example,99mTclabeing lipidosomes loaded with DOX has been approved to carry out clinic Phase I trial. Itachieves treatment of head and neck squamous carcinoma by SPECT imaging.
However, the conjugation may alter the functional activities of tumor-targeted ligands,contrast agents or therapeutic agents. Multi-step chemical conjugation may lead to lowerthe specificity of tumor ligands, weaken the imaging intensity of contrast agents, or lose theantitumor activity of drugs. Meanwhile, additional reaction agents and purificationprocedure in the multi-step conjugation would require higher cost. In particular,nanoplatform-based strategy for the multifunctional nanotheranostic agents has been provenchallenging and is still at an early or proof-of-concept stage due to several fundamentalproblems and technical barriers, such as the lag effect from reticuloendothelial system (RES)and mononuclear phagocytic system, the difficulties in large scale preparation with highreproductivity, and the potential safe concerns for their long-term fate and toxicity. Thus,investigation of new strategy for obtainment of theranostic agents is high necessary.
Heptamethine cyanine dyes with two terminal indole heterocyclic units linked by apolymethine bridge, characterized with high molar absorption coefficient and fluorescencequantum yield, good photostability, have been applied widely in labeling nucleic acids andproteins, gene sequencing, in vivo imaging animals. Of them, Indocyanine green (ICG)has been used in clinic extensively for visualizing tiny blood vessels of livers and eyes.Recently, our studies have characterized a heptamethine cyanine dye, IR-780with tumortargeting and NIR imaging properties without chemical conjugation of tumor target ligand.The targeting property of IR-780also has been confirmed in a broad spectrum of tumorcells and tumor xenografts, suggesting an attractive diagnostic agent for sensitive andnoninvasive tumor detection. The subcellular localization of IR-780in tumor cells furthershowed that the dye exclusively accumulated in the mitochondria of tumor cells. Theunique property of delocalized lipophilic cation, may give IR-780the ability to target andretain in mitochondria of tumor cells.
Based on our previous findings on IR-780simultaneously with tumor targeting andNIR imaging properties, we hypothesized:(1) whether IR-780could be used as a carrier tochemically conjugate antitumor drugs for tumor targeted imaging and therapy;(2) whetherthe intrinsically multifunctional heptamethine cyanine dyes could be obtained by rational modification of IR-780without need of chemical conjugation of antitumor durgs. If thesedesigns mentioned above are proved, they would provide a valuable strategy for preparationof theranositc agents applied in cancer personalized therapy.
Methods and Results:
In order to verify the hypotheses referred above, and obtain multifunctionalheptamethine cyanine dyes with tumor targeted imaging and therapeutic properties, thisdissertation is divided into three chapters and main results are as follows:
1. Synthesis and characterization of a carboxyl derivative of IR-780for tumortargeting and NIR imaging
1.1A modified synthetic method for heptamethine cyanine dyes was established. Dueto low efficiency and small-scale limitation in preparing heptamethine cyanine dyes aspreviously reported in literatures, an improved synthetic method needs to be established.The synthetic routes of heptamethine cyanine dyes including Vilsmeier-Haack formylationreaction, N-alkylation reaction and condensation reaction, were optimized for theconditions of reaction and post-treatment, resulted in the improvement of syntheticefficiency with large-scale available preparation, providing a basis for further drugconjugation.
1.2IR-808, a derivative of IR-780with two reactive carboxyl groups was synthesized.In order to obtain multifunctional heptamethine cyanine dyes simultaneously with tumortargeted imaging and antitumor activites, IR-780needs to chemically conjugate with anantitumor drug. However, IR-780is lack of available functional group in its structure forfurther conjugation. IR-808was synthesized by using6-bromo hexanoic acid as the startingmaterial to introduce a carboxyl group in a key raw material which was used to synthesizeIR-780. Its structure was comfirmed with Hydrogen nuclear magnetic resonance (1H-NMR),Carbon-nuclear magnetic resonance (13C-NMR) and High resolution mass spectrum(HRMS).
1.3IR-808was identified with good tumor targeting and NIR imaging properties.After determining the spectra of IR-808, it was found the peak wavelength of absorbtionand emission was in the NIR region (700-900nm). IR-808exhibited NIR fluorescentimaging ability and pretty good stability in serum. The preferential in vivo tumoraccumulation of IR-808was comfirmed in rTDMCs, HeLa and LLC tumor xenografts, suggesting a prospective potential used for tumor specific imaging and diagnosis. Insummary, our results showed that IR-808with two reactive carboxyl groups exhibited thetumor targeting and NIR imaging properties, providing a basis for further drug conjugation.This finding also provides a possibility in developing a radionuclide-labelled heptamethinecyanine dyes for deep-tumor imaging and diagnosis.
2. Conjugation of IR-808with antitumor drugs for tumor-targeted imaging andtreatment
2.1Three clinically available antitumor drugs were covalently conjugated with IR-808.On the basis of the above studies, IR-808was further designed to conjugate with antitumordrugs. We successfully conjugated IR-808with Melphalan,5-Fluoro-2,4(1H,3H)pyrimidinedione (5-Fu), Doxorubicin(DOX), and obtained IR-808NM, IR-808-5Fu andIR-808DOX, respectively. IR-808NM and IR-808-5Fu were afforded with high purity, andtheir structures were comfirmed with1H NMR and HRMS. Successful conjugation of DOXwith IR-808was ensured by the testing report of HRMS. However, IR-808DOX wasafforded with a low pure complex even through continuously optimizing the conditions ofreaction and purification.
2.2The tumor targeted imaging and antitumor activity of IR-808NM and IR-808-5Fuwere investigated. The two conjugations were injected into the rTDMCs tumor-bearingmice to evaluate their specificity for tumor imaging. In vivo NIR imaging showed thatIR-808NM remained the tumor-targeted NIR imaging ability while IR-808-5Fu failed. Then,the antitumor activity of IR-808NM was evaluated with MG63osteosarcoma cancer cellsand SW480colon cancer cells. It was found that IR-808NM inhibited the growth of cancercells efficiently. Its antitumor activity was significantly higher than that of Melphalan.These results supported that we successfully developed a multifunctional heptamethinecyanine dye with chemical conjugation strategy, and verify the hypothesis that this kind oftumor targeting NIR dyes can be used as a carrier of antitumor drugs for tumor targetedimaging and therapy.
3. Synthesis of esterified derivatives of IR-808for tumor treatment
According to our previous work and others, some caynine dyes, including IR-780would exhibit mitochondrial toxicity at higher concentration. Because mitochondria areencircled with two lipophilic membranes, lipophilic agents are more readily transported across bistratal membranes to reach a higher concentration. Basing on these investigations,we hypothesized that esterification of IR-808, would increase its lipophilicity greatly, aswell as its mitochondrial accumulation and potential toxicity. In this case, multifunctionalheptamethine cyanine dyes simultaneously with tumor targeted imaging and antitumoractivity would be obtained without need of chemical conjugation to tumor specific ligands.
3.1Four esterified derivatives of IR-808were synthesized and characterized with NIRimaging property. In order to improve the lipophilicity of IR-808, and significantly enhancetheir accumulation and toxicity in tumor mitochondria, several esterified derivatives ofIR-808including butyl ester (IR-808DB), hexyl ester (IR-808DH), cyclohexyl ester(IR-808DCH), phenol ester (IR-808DP) were prepared with a highly efficient andlarge-scale available method. All these newly synthesized molecules have not been reportedpreviously. These molecules in methanol, DMSO and serum exhibited the maximumabsorption and emission wavelengths in the NIR region. Compared with ICG, esterderivatives of IR-808exhibited higher molar extinction coefficient and fluorescencequantum yields.
3.2IR-808DB was characterized with significant antitumor effect. Cytotoxicity ofIR-808and its ester derivatives were performed on A549human lung cancer cells. Studiesshowed that these ester derivatives exhibited diverse anticancer activities on A549carcinoma cells. Of them, IR-808DB displayed most remarkable antitumor activity with anIC50of0.43μM. We further confirmed the antitumor effect of IR-808DB in other humancancer cell lines, including breast cancer cells (MDA231and MCF-7), hepatoma cells(SMMC-7721, HepG2), and non-small-cell lung cancer NCIH-460cells, demonstrating apotent antitumor activity of IR-808DB (IC50<6μM) on a broad spectrum of tumor cells. Invivo tumoricidal activities of IR-808DB were then evaluated in rTDMCs, A549, LLC, andHeLa tumor xenografts. Results revealed that5mg/kg IR-808DB inhibited tumor growthobviously as compared to20mg/kg Cyclophosphamide (CXT) group, a classic antitumordrug which has been widely applied in clinic. Laudable tumoricidal activities of IR-808DBwere observed in rTDMCs, A549, LLC and HeLa tumor xenografts, suggest the potentantitumor activity of IR-808DB in a variety of tumor xenografts. Meanwhile, the bodyweight and physical conditions of mice after treatment were not changed significantly. Inaddition, organs harvested from the mice with IR-808DB treatment were subjected to histopathological analysis and also showed no apparent abnormalities. The tumor growthinhibition of IR-808DB was also compared with IR-808NM, and results revealed thatIR-808DB displayed significantly higher tumor growth inhibition effect than IR-808NMdid.
3.3IR-808DB was demonstrated with the ability of tumor-targeted imaging. In vivoNIR fluorescence imaging of athymic nude mice bearing with rTDMCs tumor xenograftsshowed IR-80DB with tumor targeting capability. The fluorescent intensity of the dissectedorgans and tumors further confirmed the preferential accumulation of IR-808DB in tumors.To evaluate its potential application in tumor early diagnosis,0.4mg/kg (imaging dosage)of IR-808DB was injected into the rats bearing rTDMCs tumors through tail vein and thefluorescent signals associated with tumor site were clearly detected even the tumor was notvisualized by eyes, indicating a potential used for tumor early identification and diagnosis.
Conclusion and Innovation:
In this dissertation, we initially established a modified synthetic method for IR-780and its derivatives, synthesized an analogue of IR-780with reactive carboxyl groups(IR-808) with tumor targeting and NIR imaging properties, providing a basis for furtherdrug conjugation. Next, IR-808was conjugated with three clinically available antitumordrugs respectively, and a multifunctional derivative of IR-808with tumor targeting andantitumor activity (IR-808NM) was successfully obtained. These results supported that wesuccessfully developed a multifunctional heptamethine cyanine dye with chemicalconjugation strategy, and verify the hypothesis that this kind of tumor targeting NIR dyescan be used as a carrier of antitumor drugs for tumor targeted imaging and therapy. Finally,by esterification of IR-808to increase its lipophilicity as well as its mitochondrialaccumulation and toxicity, we eventually obtained a multifunctional heptamethine cyaninedye (IR-808DB) intrinsically with tumor targeted imaging and antitumor effect withoutneed of chemical conjugation to tumor specific ligands. As a potential antitumor drug,IR-808DB has advantages of not only good tumor targeting, potent antitumor effect andfine NIR imaging, but also small molecular weight, low cost and large-scale availablepreparation. This multifunctional small molecule presents a valuable strategy forpreparation of new theranositc agents in cancer personalized therapy.
引文
1曾红梅,陈万青.中国癌症流行病学与防治研究现状[J].化学进展,2013(09):1415-1420.
2Siegel R, Naishadham D, Jemal A. Cancer statistics,2013[J]. CA Cancer J Clin,2013,63(1):11-30.
3Humphrey R W, Brockway-Lunardi L M, Bonk D T, et al. Opportunities and challenges in the development ofexperimental drug combinations for cancer[J]. J Natl Cancer Inst,2011,103(16):1222-1226.
4Ozdemir V, Williams-Jones B, Glatt S J, et al. Shifting emphasis from pharmacogenomics to theragnostics[J]. NatBiotechnol,2006,24(8):942-946.
5Zhang H, Tian M, Ignasi C, et al. Molecular image-guided theranostic and personalized medicine[J]. J BiomedBiotechnol,2011,2011:673697.
6Qin S Y, Feng J, Rong L, et al. Theranostic GO-based nanohybrid for tumor induced imaging and potentialcombinational tumor therapy[J]. Small,2014,10(3):599-608.
7Bahmani B, Bacon D, Anvari B. Erythrocyte-derived photo-theranostic agents: hybrid nano-vesicles containingindocyanine green for near infrared imaging and therapeutic applications[J]. Sci Rep,2013,3:2180.
8Lee G Y, Qian W P, Wang L, et al. Theranostic nanoparticles with controlled release of gemcitabine for targetedtherapy and MRI of pancreatic cancer[J]. ACS Nano,2013,7(3):2078-2089.
9Godovikova T S, Lisitskiy V A, Antonova N M, et al. Ligand-directed acid-sensitive amidophosphate5-trifluoromethyl-2'-deoxyuridine conjugate as a potential theranostic agent[J]. Bioconjug Chem,2013,24(5):780-795.
10Yang Z, Lee J H, Jeon H M, et al. Folate-based near-infrared fluorescent theranostic gemcitabine delivery[J]. J AmChem Soc,2013,135(31):11657-11662.
1Ahmed N, Fessi H, Elaissari A. Theranostic applications of nanoparticles in cancer[J]. Drug Discov Today,2012,17(17-18):928-934.
Pan D. Theranostic nanomedicine with functional nanoarchitecture[J]. Mol Pharm,2013,10(3):781-782.
3Caldorera-Moore M E, Liechty W B, Peppas N A. Responsive theranostic systems: integration of diagnostic imagingagents and responsive controlled release drug delivery carriers[J]. Acc Chem Res,2011,44(10):1061-1070.
4Alberti C. From molecular imaging in preclinical/clinical oncology to theranostic applications in targeted tumortherapy[J]. Eur Rev Med Pharmacol Sci,2012,16(14):1925-1933.
5Shen B Q, Xu K, Liu L, et al. Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drugconjugates[J]. Nat Biotechnol,2012,30(2):184-189.
6Cheng Z, Al Z A, Hui J Z, et al. Multifunctional nanoparticles: cost versus benefit of adding targeting and imagingcapabilities[J]. Science,2012,338(6109):903-910.
7Zhang C, Liu T, Su Y, et al. A near-infrared fluorescent heptamethine indocyanine dye with preferential tumoraccumulation for in vivo imaging[J]. Biomaterials,2010,31(25):6612-6617.
8Hilderbrand S A, Weissleder R. Near-infrared fluorescence: application to in vivo molecular imaging[J]. Curr OpinChem Biol,2010,14(1):71-79.
1Okuda K, Okabe Y, Kadonosono T, et al.2-Nitroimidazole-tricarbocyanine conjugate as a near-infrared fluorescentprobe for in vivo imaging of tumor hypoxia[J]. Bioconjug Chem,2012,23(3):324-329.
1Mishra A, Behera R K, Behera P K, et al. Cyanines during the1990s: a review[J]. Chem Rev,2000,100(6):1973-2012.
2Stennett E M, Ciuba M A, Levitus M. Photophysical processes in single molecule organic fluorescent probes[J]. ChemSoc Rev,2014,43(4):1057-1075.
3El-Aal R M A. Thiazoline and thiazoloxazole in synthesis of novel meso-substituted mono-, tri-, and hepta-methinecyanine dyes[J]. Dyes and Pigments,2004,61(3):251-261.
1Kobayashi H, Ogawa M, Alford R, et al. New strategies for fluorescent probe design in medical diagnostic imaging[J].Chem Rev,2010,110(5):2620-2640.
2Shershov V E, Spitsyn M A, Kuznetsova V E, et al. Near-infrared heptamethine cyanine dyes. Synthesis, spectroscopiccharacterization, thermal properties and photostability[J]. Dyes and Pigments,2013,97(2):353-360.
3Guo Z, Park S, Yoon J, et al. Recent progress in the development of near-infrared fluorescent probes for bioimagingapplications[J]. Chem Soc Rev,2014,43(1):16-29.
4Jun Yin, Younghee Kwon, Dabin Kim, Dayoung Lee, Gyoungmi Kim, Ying Hu, Ji-Hwan Ryu, and Juyoung Yoon.Cyanine-based fluorescent probe for highly selective detection of glutathione in cell cultures and live mouse tissues[J]. J.Am. Chem. Soc.,2014,136(14):5351-5358.
5Sevick-Muraca E M. Translation of near-infrared fluorescence imaging technologies: emerging clinical applications[J].Annu Rev Med,2012,63:217-231.
6Ishikawa D, Shinzawa H, Genkawa T, et al. Recent progress of near-infrared (NIR) imaging-development of novelinstruments and their applicability for practical situations[J]. Anal Sci,2014,30(1):143-150.
1Becker A, Hessenius C, Licha K, et al. Receptor-targeted optical imaging of tumors with near-infrared fluorescentligands[J]. Nat Biotechnol,2001,19(4):327-331.
2Liu F, Deng D, Chen X, et al. Folate-polyethylene glycol conjugated near-infrared fluorescence probe with hightargeting affinity and sensitivity for in vivo early tumor diagnosis[J]. Mol Imaging Biol,2010,12(6):595-607.
3Kovar J L, Volcheck W, Sevick-Muraca E, et al. Characterization and performance of a near-infrared2-deoxyglucoseoptical imaging agent for mouse cancer models[J]. Anal Biochem,2009,384(2):254-262.
Mahounga D M, Shan L, Jie C, et al. Synthesis of a novel L-methyl-methionine-ICG-Der-02fluorescent probe for invivo near infrared imaging of tumors[J]. Mol Imaging Biol,2012,14(6):699-707.
5Xu Y, Zanganeh S, Mohammad I, et al. Targeting tumor hypoxia with2-nitroimidazole-indocyanine green dyeconjugates[J]. J Biomed Opt,2013,18(6):66009.
6Cai W, Shin D W, Chen K, et al. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in livingsubjects[J]. Nano Lett,2006,6(4):669-676.
7Ogawa M, Kosaka N, Choyke P L, et al. In vivo molecular imaging of cancer with a quenching near-infraredfluorescent probe using conjugates of monoclonal antibodies and indocyanine green[J]. Cancer Res,2009,69(4):1268-1272.
8Kim M Y, Jeong S. In vitro selection of RNA aptamer and specific targeting of ErbB2in breast cancer cells[J]. NucleicAcid Ther,2011,21(3):173-178.
9Zhang C, Liu T, Su Y, et al. A near-infrared fluorescent heptamethine indocyanine dye with preferential tumoraccumulation for in vivo imaging[J]. Biomaterials,2010,31(25):6612-6617.
1Zhang C, Peng Y, Wang F, et al. A synthetic cantharidin analog for the enhancement of doxorubicin suppression ofstem cell-derived aggressive sarcoma[J]. Biomaterials,2010,31(36):9535-9543.
1Andreev O A, Dupuy A D, Segala M, et al. Mechanism and uses of a membrane peptide that targets tumors and otheracidic tissues in vivo[J]. Proc Natl Acad Sci U S A,2007,104(19):7893-7898.
1Reynolds G A, Drexhage K H. Stable heptamethine pyrylium dyes that absorb in the infrared[J]. J Org Chem,1977,42(5):885-888.
2Zhang Z, Achilefu S. Synthesis and evaluation of polyhydroxylated near-infrared carbocyanine molecular probes[J].Org Lett,2004,6(12):2067-2070.
3Henary M, Pannu V, Owens E A, et al. Near infrared active heptacyanine dyes with unique cancer-imaging andcytotoxic properties[J]. Bioorg Med Chem Lett,2012,22(2):1242-1246.
1Sundholm D, Taubert S, Pichierri F. Calculation of absorption and emission spectra of [n]cycloparaphenylenes: thereason for the large Stokes shift[J]. Phys Chem Chem Phys,2010,12(11):2751-2757.
1Okuda K, Okabe Y, Kadonosono T, et al.2-Nitroimidazole-tricarbocyanine conjugate as a near-infrared fluorescentprobe for in vivo imaging of tumor hypoxia[J]. Bioconjug Chem,2012,23(3):324-329.
2Andreev O A, Dupuy A D, Segala M, et al. Mechanism and uses of a membrane peptide that targets tumors and otheracidic tissues in vivo[J]. Proc Natl Acad Sci U S A,2007,104(19):7893-7898.
1James M L, Gambhir S S. A molecular imaging primer: modalities, imaging agents, and applications[J]. Physiol Rev,2012,92(2):897-965.
2Pierce M C, Javier D J, Richards-Kortum R. Optical contrast agents and imaging systems for detection and diagnosis ofcancer[J]. Int J Cancer,2008,123(9):1979-1990.
3Hilderbrand S A, Weissleder R. Near-infrared fluorescence: application to in vivo molecular imaging[J]. Curr OpinChem Biol,2010,14(1):71-79.
4王栩,赵谦,孙娟,,等.细胞内活性小分子近红外荧光成像探针[J].化学进展,2013(Z1):179-191.
5Chen X Y, Peng X J, Cui A J, et al. Photostabilities of novel heptamethine3H-indolenine cyanine dyes with differentN-substituents[J]. J Photoch Photobio A-Chemistry,2006,181(1):79-85.
1Song F, Peng X, Lu E, et al. Syntheses, spectral properties and photostabilities of novel water-soluble near-infraredcyanine dyes[J]. J Photoch Photobio A-Chemistry,2004,168(1–2):53-57.
2Kovalska V B, Volkova K D, Losytskyy M Y, et al.6,6'-Disubstituted benzothiazole trimethine cyanines--newfluorescent dyes for DNA detection[J]. Spectrochim Acta A Mol Biomol Spectrosc,2006,65(2):271-277.
3Strekowski L, Mason C J, Lee H, et al. Synthesis of water-soluble near-infrared cyanine dyes functionalized with[(succinimido)oxy]carbonyl group[J]. J Heterocyclic Chem.,2003,40(5):913-916.
4Kim J S, Kodagahally R, Strekowski L, et al. A study of intramolecular H-complexes of novel bis(heptamethinecyanine) dyes[J]. Talanta,2005,67(5):947-954.
5Choi H S, Gibbs S L, Lee J H, et al. Targeted zwitterionic near-infrared fluorophores for improved optical imaging[J].Nat. Biotech.,2013,31(2):148-153.
6Luo S, Zhang E, Su Y, et al. A review of NIR dyes in cancer targeting and imaging[J]. Biomaterials,2011,32(29):7127-7138.
1Zhang E, Luo S, Tan X, et al. Mechanistic study of IR-780dye as a potential tumor targeting and drug deliveryagent[J]. Biomaterials,2014,35(2):771-778.
2Panigrahi M, Dash S, Patel S, et al. Syntheses of cyanines: a review[J]. Tetrahedron,2012,68(3):781-805.
3Henary M, Pannu V, Owens E A, et al. Near infrared active heptacyanine dyes with unique cancer-imaging andcytotoxic properties[J]. Bioorg Med Chem Lett,2012,22(2):1242-1246.
1Guo Q, Luo S, Qi Q, et al. Peliminary structure-activity relationship study of heptamethine indocyanine dyes fortumor-targeted imaging[J]. J Innov Opt Heal Sci,2013,6(13500031).
1Devos T, Thiessen S, Cuyle P J, et al. Long-term follow-up in a patient with the dermato-neuro syndrome treated withhigh-dose melphalan, thalidomide, and intravenous immunoglobulins for more than7years[J]. Ann Hematol,2014.
2Luo Z, Chang J, Guo Y, et al. Continuous infusion of5-FU with split-dose cisplatin: an effective treatment foradvanced squamous-cell carcinoma of the head and neck[J]. Clin Invest Med,2011,34(1): E8-E13.
3Tewey K M, Rowe T C, Yang L, et al. Adriamycin-induced DNA damage mediated by mammalian DNAtopoisomerase II[J]. Science,1984,226(4673):466-468.
1Low P S, Kularatne S A. Folate-targeted therapeutic and imaging agents for cancer[J]. Curr Opin Chem Biol,2009,13(3):256-262.
Siegel B A, Dehdashti F, Mutch D G, et al. Evaluation of111In-DTPA-folate as a receptor-targeted diagnostic agent forovarian cancer: initial clinical results[J]. J Nucl Med,2003,44(5):700-707.
3Muller C, Hohn A, Schubiger P A, et al. Preclinical evaluation of novel organometallic99mTc-folate and99mTc-pteroateradiotracers for folate receptor-positive tumour targeting[J]. Eur J Nucl Med Mol Imaging,2006,33(9):1007-1016.
4Eiber M, Takei T, Souvatzoglou M, Matthias Eiber, Toshiki Takei, Markus Schwaiger, and Ambros J. Beer.Performance of whole-body integrated18F-FDG PET/MR in comparison to PET/CT for evaluation of malignant bonelesions[J]. J Nucl Med,2014,55(2):191-197.
5Hashida M, Nishikawa M, Yamashita F, et al. Cell-specific delivery of genes with glycosylated carriers[J]. Adv DrugDeliv Rev,2001,52(3):187-196.
6Junutula J R, Raab H, Clark S, et al. Site-specific conjugation of a cytotoxic drug to an antibody improves thetherapeutic index[J]. Nat Biotechnol,2008,26(8):925-932.
7Senter P D, Sievers E L. The discovery and development of brentuximab vedotin for use in relapsed Hodgkinlymphoma and systemic anaplastic large cell lymphoma[J]. Nat Biotechnol,2012,30(7):631-637.
1Junutula J R, Flagella K M, Graham R A, et al. Engineered thio-trastuzumab-DM1conjugate with an improvedtherapeutic index to target human epidermal growth factor receptor2-positive breast cancer[J]. Clin Cancer Res,2010,16(19):4769-4778.
Senter P D. Potent antibody drug conjugates for cancer therapy[J]. Curr Opin Chem Biol,2009,13(3):235-244.
Wiseman G A, Witzig T E. Yttrium-90(90Y) ibritumomab tiuxetan (Zevalin) induces long-term durable responses inpatients with relapsed or refractory B-Cell non-Hodgkin's lymphoma[J]. Cancer Biother Radiopharm,2005,20(2):185-188.
Kaminski M S, Tuck M, Estes J, et al.131I-tositumomab therapy as initial treatment for follicular lymphoma[J]. N EnglJ Med,2005,352(5):441-449.
Sugahara K N, Teesalu T, Karmali P P, et al. Coadministration of a tumor-penetrating peptide enhances the efficacy ofcancer drugs[J]. Science,2010,328(5981):1031-1035.
Morales A R, Yanez C O, Zhang Y, et al. Small molecule fluorophore and copolymer RGD peptide conjugates for exvivo two-photon fluorescence tumor vasculature imaging[J]. Biomaterials,2012,33(33):8477-8485.
Shi J, Xiao Z, Kamaly N, et al. Self-assembled targeted nanoparticles: evolution of technologies and bench to bedsidetranslation[J]. Acc Chem Res,2011,44(10):1123-1134.
Mccarthy N. Running a MUC1[J]. Nat.Rev. Cancer,2012,12(5):317.
1Moore A, Medarova Z, Potthast A, et al. In vivo targeting of underglycosylated MUC-1tumor antigen using amultimodal imaging probe[J]. Cancer Res,2004,64(5):1821-1827.
Ray P, Viles K D, Soule E E, et al. Application of aptamers for targeted therapeutics[J]. Arch Immunol Ther Ex,2013,61(4):255-271.
3Famulok M, Hartig J S, Mayer G. Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy[J].Chem.Rev.,2007,107(9):3715-3743.
1Teicher B A, Chari R V. Antibody conjugate therapeutics: challenges and potential[J]. Clin Cancer Res,2011,17(20):6389-6397.
2Vasir J K, Reddy M K, Labhasetwar V D. Nanosystems in drug targeting: Opportunities and challenges[J]. CurrNanosci,2005,1(1):47-64.
3Cheng Z, Al Z A, Hui J Z, et al. Multifunctional nanoparticles: cost versus benefit of adding targeting and imagingcapabilities[J]. Science,2012,338(6109):903-910.
1Anderson W M, Delinck D L, Benninger L, et al. Cytotoxic effect of thiacarbocyanine dyes on human colon carcinomacells and inhibition of bovine heart mitochondrial NADH-ubiquinone reductase activity via a rotenone-type mechanismby two of the dyes[J]. Biochem Pharmacol,1993,45(3):691-696.
2Krieg M, Bilitz J M. Structurally modified trimethine thiacarbocyanine dyes. Effect of N-alkyl substituents onantineoplastic behavior[J]. Biochem Pharmacol,1996,51(11):1461-1467.
1Youssif B G, Okuda K, Kadonosono T, et al. Development of a hypoxia-selective near-infrared fluorescent probe fornon-invasive tumor imaging[J]. Chem Pharm Bull (Tokyo),2012,60(3):402-407.
2Zhang C, Peng Y, Wang F, et al. A synthetic cantharidin analog for the enhancement of doxorubicin suppression ofstem cell-derived aggressive sarcoma[J]. Biomaterials,2010,31(36):9535-9543.
3Oh M, Tanaka T, Kobayashi M, et al. Radio-copper-labeled Cu-ATSM: an indicator of quiescent but clonogenic cellsunder mild hypoxia in a Lewis lung carcinoma model[J]. Nucl Med Biol,2009,36(4):419-426.
1Cai W, Shin D W, Chen K, et al. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in livingsubjects[J]. Nano Lett,2006,6(4):669-676.
1Okuda K, Okabe Y, Kadonosono T, et al.2-Nitroimidazole-tricarbocyanine conjugate as a near-infrared fluorescentprobe for in vivo imaging of tumor hypoxia[J]. Bioconjug Chem,2012,23(3):324-329.
1王理伟,王雷,李宁.临床肿瘤基因组学与肿瘤个体化治疗[J].临床肿瘤学杂志,2010(06):481-486.
1府伟灵,黄庆.肿瘤个体化治疗[J].重庆医学,2008(03):225-226.
2Xiong R, Soenen S J, Braeckmans K, et al. Towards theranostic multicompartment microcapsules: in-situ diagnosticsand laser-induced treatment[J]. Theranostics,2013,3(3):141-151.
3Kim T H, Lee S, Chen X. Nanotheranostics for personalized medicine[J]. Expert Rev Mol Diagn,2013,13(3):257-269.
4Caldorera-Moore M E, Liechty W B, Peppas N A. Responsive theranostic systems: integration of diagnostic imagingagents and responsive controlled release drug delivery carriers[J]. Acc Chem Res,2011,44(10):1061-1070.
1Haubold M, Wiemer M, Gessner T, et al. Integrated smart systems for theranostic applications[J]. Biomed Tech (Berl),2013.
1Jemal A, Siegel R, Xu J, Ward E. Cancer statistics,2010. CA-Cancer J Clin2010;60(5):277-300.
2Greenlee RT, Murray T, Bolden S, Wingo PA. Cancer statistics,2000. CA-Cancer J Clin2000;50(1):7-33.
Fass L. Imaging and cancer: a review. Mol Oncol2008;2(2):115-52.
4Choy G, Choyke P, Libutti SK. Current advances in molecular imaging: noninvasive in vivo bioluminescent andfluorescent optical imaging in cancer research. Mol Imaging2003;2(4):303-12.
5Hilderbrand SA, Weissleder R. Near-infrared fluorescence: application to in vivo molecular imaging. Curr Opin ChemBiol2010;14(1):71-9.
1Nurunnabi M, Cho KJ, Choi JS, Huh KM, Lee Y-k. Targeted near-IR QDs-loaded micelles for cancer therapy andimaging. Biomaterials2010;31(20):5436-44.
2Janib SM, Moses AS, MacKay JA. Imaging and drug delivery using theranostic nanoparticles. Adv Drug Deliver Rev2010;62(11):1052-63.
3Nel A, Xia T, M dler L, Li N. Toxic potential of materials at the nanolevel. Science2006;311(5761):622-7.
4Hoshino A, Hanada S, Yamamoto K. Toxicity of nanocrystal quantum dots: the relevance of surface modifications.Arch Toxicol2011:1-14.
5Alkilany AM, Nagaria PK, Hexel CR, Shaw TJ, Murphy CJ, Wyatt MD. Cellular uptake and cytotoxicity of goldnanorods: molecular origin of cytotoxicity and surface effects. Small2009;5(6):701-8.
Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T. Quantum dots versus organic dyes asfluorescent labels. Nat Methods2008;5(9):763-75.
7Escobedo JO, Rusin O, Lim S, Strongin RM. NIR dyes for bioimaging applications. Curr Opin Chem Biol2010;14(1):64-70.
8Gon alves MST. Fluorescent labeling of biomolecules with organic probes. Chem Rev2008;109(1):190-212.
1Mishra A, Behera RK, Behera PK, Mishra BK, Behera GB. Cyanines during the1990s: a review. Chem Rev2000;100(6):1973-2012.
1Ballou B, Ernst LA, Waggoner AS. Fluorescence imaging of tumors in vivo. Curr Med Chem2005;12(7):795-805.
2Lavis LD, Raines RT. Bright ideas for chemical biology. ACS Chem Biol2008;3(3):142-55.
3Kusano M, Tajima Y, Yamazaki K, Kato M, Watanabe M, Miwa M. Sentinel node mapping guided by indocyaninegreen fluorescence imaging: a new method for sentinel node navigation surgery in gastrointestinal cancer. Digest Surg2008;25(2):103-8.
4Ishizawa T, Fukushima N, Shibahara J, Masuda K, Tamura S, Aoki T, et al. Real-time identification of liver cancers byusing indocyanine green fluorescent imaging. Cancer2009;115(11):2491-504.
5Haughland RP. Molecular probes. Handbook of fluorescent probes and research chemicals,9th ed. Molecular ProbesInc, Eugene, OR,2002.
6Górecki T, Patonay G, Strekowski L, Chin R, Salazar N. Synthesis of novel near-infrared cyanine dyes for metal ion
7determination. J Heterocyclic Chem1996;33(6):1871-6.Patonay G, Antoine MD, Devanathan S, Strekowski L. Near-infrared probe for determination of solvent hydrophobicity.Appl Spectrosc1991;45(3):457-61.
8Strekowski L. Heterocyclic polymethine fyes: dynthesis, properties and applications. Springer, Berlin/Heidelberg,2008
9Chen X, Peng X, Cui A, Wang B, Wang L, Zhang R. Photostabilities of novel heptamethine3H-indolenine cyaninedyes with different N-substituents. J Photoch Photobio A2006;181(1):79-85.
1Song F, Peng X, Lu E, Zhang R, Chen X, Song B. Syntheses, spectral properties and photostabilities of novelwater-soluble near-infrared cyanine dyes. J Photoch Photobio A2004;168(1-2):53-7.
2Kovalska VB, Volkova KD, Losytskyy MY, Tolmachev OI, Balanda AO, Yarmoluk SM.6,6'-Disubstitutedbenzothiazole trimethine cyanines-new fluorescent dyes for DNA detection. Spectrochim Acta A Mol Biomol Spectrosc2006;65(2):271-7.
3Yarmoluk SM, Kovalska VB, Lukashov SS, Slominskii YL. Interaction of cyanine dyes with nucleic acids.XII.[beta]-substituted carbocyanines as possible fluorescent probes for nucleic acids detection. Bioorg Med Chem Lett1999;9(12):1677-8.
Peng X, Song F, Lu E, Wang Y, Zhou W, Fan J, et al. Heptamethine cyanine dyes with a large stokes shift and strongfluorescence: a paradigm for excited-state intramolecular charge transfer. J Am Chem Soc2005;127(12):4170-1.
5Zhou LC, Zhao GJ, Liu JF, Han KL, Wu YK, Peng XJ, et al. The charge transfer mechanism and spectral properties of
6a near-infrared heptamethine cyanine dye in alcoholic and aprotic solvents. J Photoch Photobio A2007;187(2-3):305-10.Kim JS, Kodagahally R, Strekowski L, Patonay G. A study of intramolecular H-complexes of novel bis(heptamethinecyanine) dyes. Talanta2005;67(5):947-54.
7Gragg JL. Synthesis of near-infrared heptamethine cyanine dyes. Chemistry Theses.2010:28.
8Volkova KD, Kovalska VB, Tatarets AL, Patsenker LD.Kryvorotenko DV,Yarmoluk SM. Spectroscopic study ofsquaraines as protein-sensitive fluorescent dyes. Dyes Pigments2007;72(3):285-92.
1Gayathri Devi D, Cibin TR, Ramaiah D, Abraham A. Bis(3,5-diiodo-2,4,6-trihydroxyphenyl) squaraine: a novelcandidate in photodynamic therapy for skin cancer models in vivo. J Photoch Photobio B2008;92(3):153-9.
2Umezawa K, Citterio D, Suzuki K. Water-soluble NIR fluorescent probes based on squaraine and their application forprotein labeling. Anal Sci2008;24(2):213-7.
3Nakazumi H, Ohta T, Etoh H, Uno T, Colyer CL, Hyodo Y, et al. Near-infrared luminescent bis-squaraine dyes linkedby a thiophene or pyrene spacer for noncovalent protein labeling. Synthetic Met2005;153(1-3):33-6.
4Gassensmith JJ, Baumes JM, Smith BD. Discovery and early development of squaraine rotaxanes. Chem Commun2009;(42):6329-38.
1de la Torre G, Claessens CG, Torres T. Phthalocyanines: old dyes, new materials. putting color in nanotechnology.Chem Commun2007;(20):2000-15.
2de la Torre G, Vázquez P, Agulló-López F, Torres T. Role of structural cactors in the nonlinear optical properties ofphthalocyanines and related compounds. Chem Rev2004;104(9):3723-50.
3Tanaka Y, Shin J-Y, Osuka A. Facile synthesis of large meso-pentafluorophenyl-substituted expanded porphyrins. EurJ Org Chem2008;2008(8):1341-9.
4Srinivasan A, Ishizuka T, Osuka A, Furuta H. Doubly N-confused hexaphyrin: a novel aromatic expanded porphyrin
5that complexes bis-metals in the core. J Am Chem Soc2003;125(4):878-9.Xie YS, Yamaguchi K, Toganoh M, Uno H, Suzuki M, Mori S, et al. Triply N-confused hexaphyrins: near-infraredluminescent dyes with a triangular shape. Angew Chem Int Edit2009;48(30):5496-9.
6Kuimova MK, Collins HA, Balaz M, Dahlstedt E, Levitt JA, Sergent N, et al. Photophysical properties and intracellularimaging of water-soluble porphyrin dimers for two-photon excited photodynamic therapy. Org Biomol Chem2009;7(5):889-96.
1Nishiyama N, Jang W-D, Kataoka K. Supramolecular nanocarriers integrated with dendrimers encapsulatingphotosensitizers for effective photodynamic therapy and photochemical gene delivery. New J Chem2007;31(7):1074-82.
2Celli JP, Spring BQ, Rizvi I, Evans CL, Samkoe KS, Verma S, et al. Imaging and photodynamic therapy: mechanisms,monitoring, and optimization. Chem Rev2010;110(5):2795-838.
3Li W-S, Aida T. Dendrimer porphyrins and phthalocyanines. Chem Rev2009;109(11):6047-76.
4Brown SB, Brown EA, Walker I. The present and future role of photodynamic therapy in cancer treatment. LancetOncol2004;5(8):497-508.
5Killoran J, McDonnell SO, Gallagher JF, O'Shea DF. A substituted BF2-chelated tetraarylazadipyrromethene as anintrinsic dual chemosensor in the650-850nm spectral range. New J Chem2008;32(3):483-9.
6Palma A, Tasior M, Frimannsson DO, Vu TT, Méallet-Renault R, O’Shea DF. New on-bead near-infrared fluorophoresand fluorescent sensor constructs. Org Lett2009;11(16):3638-41.
1Rickert EL, Oriana S, Hartman-Frey C, Long X, Webb TT, Nephew KP, et al. Synthesis and characterization offluorescent4-hydroxytamoxifen conjugates with unique antiestrogenic properties. Bioconjugate Chem2010;21(5):903-10.
2Donuru VR, Zhu S, Green S, Liu H. Near-infrared emissive BODIPY polymeric and copolymeric dyes. Polymer2010;51(23):5359-68.
3Loudet A, Burgess K. BODIPY dyes and their derivatives: syntheses and spectroscopic properties. Chem Rev2007;107(11):4891-932.
4Rurack K, Kollmannsberger M, Daub J. A highly efficient sensor molecule emitting in the near infrared (NIR):3,5-distyryl-8-(p-dimethylaminophenyl) difluoroboradiaza-s-indacene. New J Chem2001;25(2):289-92.
5Umezawa K, Matsui A, Nakamura Y, Citterio D, Suzuki K. Bright, color-tunable fluorescent dyes in the vis/NIRregion: establishment of new “tailor-made” multicolor fluorophores based on borondipyrromethene. Chem–Eur J2009;15(5):1096-106.
Killoran J, Allen L, Gallagher JF, Gallagher WM, O'Shea DF. Synthesis of BF2chelates oftetraarylazadipyrromethenes and evidence for their photodynamic therapeutic behavior. Chem Commun2002;(17):1862-3.
7Loudet A, Bandichhor R, Burgess K, Palma A, McDonnell SO, Hall MJ, et al. B,O-chelated azadipyrromethenes asnear-IR probes. Org Lett2008;10(21):4771-4.
1Maeda H, Bharate GY, Daruwalla J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect.Eur J Pharm Biopharm2009;71(3):409-19.
1Liu T, Wu LY, Hopkins MR, Choi JK, Berkman CE. A targeted low molecular weight near-infrared fluorescent probe
2for prostate cancer. Bioorg Med Chem Lett2010;20(23):7124-6.Chen Y, Dhara S, Banerjee SR, Byun Y, Pullambhatla M, Mease RC, et al. A low molecular weight PSMA-based
3fluorescent imaging agent for cancer. Biochem Bioph Res Co2009;390(3):624-9.Levi J, Cheng Z, Gheysens O, Patel M, Chan CT, Wang Y, et al. Fluorescent fructose derivatives for imaging breast
4cancer cells. Bioconjugate Chem2007;18(3):628-34.Dasari M, Lee S, Sy J, Kim D, Lee S, Brown M, et al. Hoechst-IR: An imaging agent that detects necrotic tissue in vivo
5by binding extracellular DNA. Org Lett2010;12(15):3300-3.Tung C-H, Lin Y, Moon WK, Weissleder R. A receptor-targeted near-infrared fluorescence probe for in vivo tumor
6imaging. ChemBioChem2002;3(8):784-6.Wang W, Ke S, Kwon S, Yallampalli S, Cameron AG, Adams KE, et al. A new optical and nuclear dual-labeled
7imaging agent targeting interleukin11receptor alpha-chain. Bioconjugate Chem2007;18(2):397-402.Jin ZH, Josserand V, Foillard S, Boturyn D, Dumy P, Favrot MC, et al. In vivo optical imaging of integrin α8ice using multivalent or monovalent cRGD targeting vectors. Mol Cancer2007;6:41.V-β3in
Carpenter RD, Andrei M, Aina OH, Lau EY, Lightstone FC, Liu R, et al. Selectively targeting T-and B-celllymphomas: a benzothiazole antagonist of α4β1integrin. J Med Chem2008;52(1):14-9.
Garanger E, Boturyn D, Jin Z, Dumy P, Favrot MC, Coll JL. New multifunctional molecular conjugate vector fortargeting, imaging, and therapy of tumors. Mol Ther2005;12(6):1168-75.
1Achilefu S, Dorshow RB, Bugaj JE, Rajagopalan R. Novel receptor-targeted fluorescent contrast agents for in vivotumor imaging. Invest Radiol2000;35(8):479-85.
2Becker A, Hessenius C, Licha K, Ebert B, Sukowski U, Semmler W, et al. Receptor-targeted optical imaging of tumorswith near-infrared fluorescent ligands. Nat Biotechnol2001;19(4):327-31.
3Pham W, Medarova Z, Moore A. Synthesis and application of a water-soluble near-infrared dye for cancer detectionusing optical imaging. Bioconjugate Chem2005;16(3):735-40.
4Citrin D, Lee AK, Scott T, Sproull M, Ménard C, Tofilon PJ, et al. In vivo tumor imaging in mice with near-infrared
5labeled endostatin. Mol Cancer Ther2004;3(4):481-8.Ke S, Wen X, Gurfinkel M, Charnsangavej C, Wallace S, Sevick-Muraca EM, et al. Near-infrared optical imaging ofepidermal growth factor receptor in breast cancer xenografts. Cancer Res2003;63(22):7870-5.
6Becker A, Riefke B, Ebert B, Sukowski U, Rinneberg H, Semmler W, et al. Macromolecular contrast agents for opticalimaging of tumors: comparison of indotricarbocyanine-labeled human serum albumin and transferrin. PhotochemPhotobiol2000;72(2):234-41.
7Petrovsky A, Schellenberger E, Josephson L, Weissleder R, Bogdanov A. Near-infrared fluorescent imaging of tumorapoptosis. Cancer Res2003;63(8):1936-42.
8Folli S, Westermann P, Braichotte D, Pelegrin A, Wagnieres G, van den Bergh H, et al. Antibody-indocyaninconjugates for immunophotodetection of human squamous cell carcinoma in nude mice. Cancer Res1994;54(10):2643-9.
9Ballou B, Fisher GW, Waggoner AS, Farkas DL, Reiland JM, Jaffe R, et al. Tumor labeling in vivo usingcyanine-conjugated monoclonal antibodies. Cancer Immunol Immun1995;41(4):257-63.
10Soukos NS, Hamblin MR, Keel S, Fabian RL, Deutsch TF, Hasan T. Epidermal growth factor receptor-targetedimmunophotodiagnosis and photoimmunotherapy of oral precancer in vivo. Cancer Res2001;61(11):4490-6.
11Rosenthal EL, Kulbersh BD, King T, Chaudhuri TR, Zinn KR. Use of fluorescent labeled anti–epidermal growthfactor receptor antibody to image head and neck squamous cell carcinoma xenografts. Mol Cancer Ther2007;6(4):1230-8.
Ramjiawan B, Maiti P, Aftanas A, Kaplan H, Fast D, Mantsch HH, et al. Noninvasive localization of tumors byimmunofluorescence imaging using a single chain Fv fragment of a human monoclonal antibody with broad cancerspecificity. Cancer2000;89(5):1134-44.
13Ogawa M, Kosaka N, Choyke PL, Kobayashi H. In vivo molecular imaging of cancer with a quenching near-infraredfluorescent probe using conjugates of monoclonal antibodies and indocyanine green. Cancer Res2009;69(4):1268-72.
1Louie A. Multimodality imaging probes: design and challenges. Chem Rev2010;110(5):3146-95.
1Rao J, Dragulescu-Andrasi A, Yao H. Fluorescence imaging in vivo: recent advances. Curr Opin Biotech2007;18(1):17-25.
2Bremer C, Tung CH, Weissleder R. In vivo molecular target assessment of matrix metalloproteinase inhibition. NatMed2001;7(6):743-8.
3Tung C-H, Mahmood U, Bredow S, Weissleder R. In vivo imaging of proteolytic enzyme activity using a novelmolecular reporter. Cancer Res2000;60(17):4953-8.
4Kobayashi H, Ogawa M, Alford R, Choyke PL, Urano Y. New strategies for fluorescent probe design in medicaldiagnostic imaging. Chem Rev2009;110(5):2620-40.
1Wang R, Yu C, Yu F, Chen L. Molecular fluorescent probes for monitoring pH changes in living cells. Trac-TrendAnal Chem2010;29(9):1004-13.
2Urano Y, Asanuma D, Hama Y, Koyama Y, Barrett T, Kamiya M, et al. Selective molecular imaging of viable cancercells with pH-activatable fluorescence probes. Nat Med2009;15(1):104-9.
3Povrozin YA, Markova LI, Tatarets AL, Sidorov VI, Terpetschnig EA, Patsenker LD. Near-infrared, dual-ratiometric
4fluorescent label for measurement of pH. Anal Biochem2009;390(2):136-40.Lee H, Akers W, Bhushan K, Bloch S, Sudlow G, Tang R, et al. Near-infrared pH-activatable fluorescent probes forimaging primary and mtastatic breast tumors. Bioconjugate Chem2011;22(4):777-84.
5Jain RK. Barriers to drug delivery in solid tumors. Sci Am1994;271(1):58-65.
6Goldsmith SJ. Receptor imaging: Competitive or complementary to antibody imaging? Semin Nucl Med1997;27(2):85-93.
1Nie S. Understanding and overcoming major barriers in cancer nanomedicine. Nanomedicine-UK2010;5(1):523-8.
2Zhang C, Liu T, Su Y, Luo S, Zhu Y, Tan X, et al. A near-infrared fluorescent heptamethine indocyanine dye with
3preferential tumor accumulation for in vivo imaging. Biomaterials2010;31(25):6612-7.Shi C, Zhang C, Su Y, Cheng T. Cyanine dyes in optical imaging of tumours. Lancet Oncol2010;11(9):815-6.
4Yang X, Shi C, Tong R, Qian W, Zhau HE, Wang R, et al. Near IR heptamethine cyanine dye–mediated cancerimaging. Clin Cancer Res2010;16(10):2833-44.
5Trivedi ER, Harney AS, Olive MB, Podgorski I, Moin K, Sloane BF, et al. Chiral porphyrazine near-IR optical imagingagent exhibiting preferential tumor accumulation. P Natl Acad Sci U S A2010;107(4):1284-8.
1Shi C, Zhang C, Su Y, Cheng T. Cyanine dyes in optical imaging of tumours. Lancet Oncol2010;11(9):815-6.
2Yang X, Shi C, Tong R, Qian W, Zhau HE, Wang R, et al. Near IR heptamethine cyanine dye–mediated cancerimaging. Clin Cancer Res2010;16(10):2833-44.
1Chen LB. Mitochondrial membrane potential in living cells. Annu Rev Cell Biol1988;4:155-81.
2Zhang E, Zhang C, Su Y, Cheng T, Shi C. Newly developed strategies for multifunctional mitochondria-targeted agentsin cancer therapy. Drug Discov Today2011;16(3-4):140-6.
1Catia Marzolini, Rommel G Tirona, Richard B Kim. Pharmacogenomics of the OATP and OAT families.Pharmacogenomics2004;5(3):273-282
2Trivedi ER, Harney AS, Olive MB, Podgorski I, Moin K, Sloane BF, et al. Chiral porphyrazine near-IR optical imagingagent exhibiting preferential tumor accumulation. P Natl Acad Sci U S A2010;107(4):1284-8.
3Trivedi ER, Lee S, Zong H, Blumenfeld CM, Barrett AGM, Hoffman BM. Synthesis of heteroatom substitutednaphthoporphyrazine derivatives with near-infrared absorption and emission. J Org Chem2010;75(5):1799-802.
4Song Y, Zong H, Trivedi ER, Vesper BJ, Waters EA, Barrett AGM, et al. Synthesis and characterization of newporphyrazine-Gd(III) conjugates as multimodal MR contrast agents. Bioconjugate Chem2010;21(12):2267-75.
1Josephson L, Kircher MF, Mahmood U, Tang Y, Weissleder R. Near-infrared fluorescent nanoparticles as combinedMR/optical imaging probes. Bioconjugate Chem2002;13(3):554-60.
2Cai W, Chen K, Li ZB, Gambhir SS, Chen X. Dual-function probe for PET and near-infrared fluorescence imaging oftumor vasculature. J Nucl Med2007;48(11):1862-70.
3McCann CM, Waterman P, Figueiredo JL, Aikawa E, Weissleder R, Chen JW. Combined magnetic resonance andfluorescence imaging of the living mouse brain reveals glioma response to chemotherapy. Neuroimage2009;45(2):360-9.
1Lampidis TJ, Salet C, Moreno G, Chen LB. Effects of the mitochondrial probe rhodamine123and related analogs onthe function and viability of pulsating myocardial cells in culture. Inflamm Res1984;14(5):751-7.
2Mojzisova H, Bonneau S, Brault D. Structural and physico-chemical determinants of the interactions of macrocyclicphotosensitizers with cells. Eur Biophys J2007;36(8):943-53.
[1]曾红梅,陈万青.中国癌症流行病学与防治研究现状[J].化学进展,2013(09):1415-1420.
[2] Siegel R, Naishadham D, Jemal A. Cancer statistics,2013[J]. CA Cancer J Clin,2013,63(1):11-30.
[3] Humphrey R W, Brockway-Lunardi L M, Bonk D T, et al. Opportunities andchallenges in the development of experimental drug combinations for cancer[J]. JNatl Cancer Inst,2011,103(16):1222-1226.
[4] Ozdemir V, Williams-Jones B, Glatt S J, et al. Shifting emphasis frompharmacogenomics to theragnostics[J]. Nat Biotechnol,2006,24(8):942-946.
[5] Zhang H, Tian M, Ignasi C, et al. Molecular image-guided theranostic andpersonalized medicine[J]. J Biomed Biotechnol,2011,2011:673697.
[6] Qin S Y, Feng J, Rong L, et al. Theranostic GO-based nanohybrid for tumor inducedimaging and potential combinational tumor therapy[J]. Small,2014,10(3):599-608.
[7] Bahmani B, Bacon D, Anvari B. Erythrocyte-derived photo-theranostic agents: hybridnano-vesicles containing indocyanine green for near infrared imaging and therapeuticapplications[J]. Sci Rep,2013,3:2180.
[8] Lee G Y, Qian W P, Wang L, et al. Theranostic nanoparticles with controlled releaseof gemcitabine for targeted therapy and MRI of pancreatic cancer[J]. ACS Nano,2013,7(3):2078-2089.
[9] Godovikova T S, Lisitskiy V A, Antonova N M, et al. Ligand-directed acid-sensitiveamidophosphate5-trifluoromethyl-2'-deoxyuridine conjugate as a potentialtheranostic agent[J]. Bioconjug Chem,2013,24(5):780-795.
[10] Yang Z, Lee J H, Jeon H M, et al. Folate-based near-infrared fluorescent theranosticgemcitabine delivery[J]. J Am Chem Soc,2013,135(31):11657-11662.
[11] Ahmed N, Fessi H, Elaissari A. Theranostic applications of nanoparticles in cancer[J].Drug Discov Today,2012,17(17-18):928-934.
[12] Pan D. Theranostic nanomedicine with functional nanoarchitecture[J]. Mol Pharm,2013,10(3):781-782.
[13] Caldorera-Moore M E, Liechty W B, Peppas N A. Responsive theranostic systems:integration of diagnostic imaging agents and responsive controlled release drugdelivery carriers[J]. Acc Chem Res,2011,44(10):1061-1070.
[14] Alberti C. From molecular imaging in preclinical/clinical oncology to theranosticapplications in targeted tumor therapy[J]. Eur Rev Med Pharmacol Sci,2012,16(14):1925-1933.
[15] Shen B Q, Xu K, Liu L, et al. Conjugation site modulates the in vivo stability andtherapeutic activity of antibody-drug conjugates[J]. Nat Biotechnol,2012,30(2):184-189.
[16] Cheng Z, Al Z A, Hui J Z, et al. Multifunctional nanoparticles: cost versus benefit ofadding targeting and imaging capabilities[J]. Science,2012,338(6109):903-910.
[17] Zhang C, Liu T, Su Y, et al. A near-infrared fluorescent heptamethine indocyaninedye with preferential tumor accumulation for in vivo imaging[J]. Biomaterials,2010,31(25):6612-6617.
[18] Hilderbrand S A, Weissleder R. Near-infrared fluorescence: application to in vivomolecular imaging[J]. Curr Opin Chem Biol,2010,14(1):71-79.
[19] Okuda K, Okabe Y, Kadonosono T, et al.2-Nitroimidazole-tricarbocyanine conjugateas a near-infrared fluorescent probe for in vivo imaging of tumor hypoxia[J].Bioconjug Chem,2012,23(3):324-329.
[20] Mishra A, Behera R K, Behera P K, et al. Cyanines during the1990s: a review[J].Chem Rev,2000,100(6):1973-2012.
[21] Stennett E M, Ciuba M A, Levitus M. Photophysical processes in single moleculeorganic fluorescent probes[J]. Chem Soc Rev,2014,43(4):1057-1075.
[22] El-Aal R M A. Thiazoline and thiazoloxazole in synthesis of novel meso-substitutedmono-, tri-, and hepta-methine cyanine dyes[J]. Dyes and Pigments,2004,61(3):251-261.
[23] Kobayashi H, Ogawa M, Alford R, et al. New strategies for fluorescent probe designin medical diagnostic imaging[J]. Chem Rev,2010,110(5):2620-2640.
[24] Shershov V E, Spitsyn M A, Kuznetsova V E, et al. Near-infrared heptamethinecyanine dyes. Synthesis, spectroscopic characterization, thermal properties andphotostability[J]. Dyes and Pigments,2013,97(2):353-360.
[25] Guo Z, Park S, Yoon J, et al. Recent progress in the development of near-infraredfluorescent probes for bioimaging applications[J]. Chem Soc Rev,2014,43(1):16-29.
[26] Jun Yin, Younghee Kwon, Dabin Kim, Dayoung Lee, Gyoungmi Kim, Ying Hu,Ji-Hwan Ryu, and Juyoung Yoon. Cyanine-based fluorescent probe for highlyselective detection of glutathione in cell cultures and live mouse tissues[J]. J. Am.Chem. Soc.,2014,136(14):5351-5358.
[27] Sevick-Muraca E M. Translation of near-infrared fluorescence imaging technologies:emerging clinical applications[J]. Annu Rev Med,2012,63:217-231.
[28] Ishikawa D, Shinzawa H, Genkawa T, et al. Recent progress of near-infrared (NIR)imaging-development of novel instruments and their applicability for practicalsituations[J]. Anal Sci,2014,30(1):143-150.
[29] Becker A, Hessenius C, Licha K, et al. Receptor-targeted optical imaging of tumorswith near-infrared fluorescent ligands[J]. Nat Biotechnol,2001,19(4):327-331.
[30] Liu F, Deng D, Chen X, et al. Folate-polyethylene glycol conjugated near-infraredfluorescence probe with high targeting affinity and sensitivity for in vivo early tumordiagnosis[J]. Mol Imaging Biol,2010,12(6):595-607.
[31] Kovar J L, Volcheck W, Sevick-Muraca E, et al. Characterization and performance ofa near-infrared2-deoxyglucose optical imaging agent for mouse cancer models[J].Anal Biochem,2009,384(2):254-262.
[32] Mahounga D M, Shan L, Jie C, et al. Synthesis of a novelL-methyl-methionine-ICG-Der-02fluorescent probe for in vivo near infrared imagingof tumors[J]. Mol Imaging Biol,2012,14(6):699-707.
[33] Xu Y, Zanganeh S, Mohammad I, et al. Targeting tumor hypoxia with2-nitroimidazole-indocyanine green dye conjugates[J]. J Biomed Opt,2013,18(6):66009.
[34] Cai W, Shin D W, Chen K, et al. Peptide-labeled near-infrared quantum dots forimaging tumor vasculature in living subjects[J]. Nano Lett,2006,6(4):669-676.
[35] Ogawa M, Kosaka N, Choyke P L, et al. In vivo molecular imaging of cancer with aquenching near-infrared fluorescent probe using conjugates of monoclonal antibodiesand indocyanine green[J]. Cancer Res,2009,69(4):1268-1272.
[36] Kim M Y, Jeong S. In vitro selection of RNA aptamer and specific targeting of ErbB2in breast cancer cells[J]. Nucleic Acid Ther,2011,21(3):173-178.
[37] Zhang C, Peng Y, Wang F, et al. A synthetic cantharidin analog for the enhancementof doxorubicin suppression of stem cell-derived aggressive sarcoma[J]. Biomaterials,2010,31(36):9535-9543.
[38] Andreev O A, Dupuy A D, Segala M, et al. Mechanism and uses of a membranepeptide that targets tumors and other acidic tissues in vivo[J]. Proc Natl Acad Sci U SA,2007,104(19):7893-7898.
[39] Reynolds G A, Drexhage K H. Stable heptamethine pyrylium dyes that absorb in theinfrared[J]. J Org Chem,1977,42(5):885-888.
[40] Zhang Z, Achilefu S. Synthesis and evaluation of polyhydroxylated near-infraredcarbocyanine molecular probes[J]. Org Lett,2004,6(12):2067-2070.
[41] Henary M, Pannu V, Owens E A, et al. Near infrared active heptacyanine dyes withunique cancer-imaging and cytotoxic properties[J]. Bioorg Med Chem Lett,2012,22(2):1242-1246.
[42] Sundholm D, Taubert S, Pichierri F. Calculation of absorption and emission spectra of[n]cycloparaphenylenes: the reason for the large Stokes shift[J]. Phys Chem ChemPhys,2010,12(11):2751-2757.
[43] James M L, Gambhir S S. A molecular imaging primer: modalities, imaging agents,and applications[J]. Physiol Rev,2012,92(2):897-965.
[44] Pierce M C, Javier D J, Richards-Kortum R. Optical contrast agents and imagingsystems for detection and diagnosis of cancer[J]. Int J Cancer,2008,123(9):1979-1990.
[45] Hilderbrand S A, Weissleder R. Near-infrared fluorescence: application to in vivomolecular imaging[J]. Curr Opin Chem Biol,2010,14(1):71-79.
[46]王栩,赵谦,孙娟,等.细胞内活性小分子近红外荧光成像探针[J].化学进展,2013(Z1):179-191.
[47] Chen X Y, Peng X J, Cui A J, et al. Photostabilities of novel heptamethine3H-indolenine cyanine dyes with different N-substituents[J]. J Photoch PhotobioA-Chemistry,2006,181(1):79-85.
[48] Song F, Peng X, Lu E, et al. Syntheses, spectral properties and photostabilities ofnovel water-soluble near-infrared cyanine dyes[J]. J Photoch Photobio A-Chemistry,2004,168(1–2):53-57.
[49] Kovalska V B, Volkova K D, Losytskyy M Y, et al.6,6'-Disubstituted benzothiazoletrimethine cyanines--new fluorescent dyes for DNA detection[J]. Spectrochim Acta AMol Biomol Spectrosc,2006,65(2):271-277.
[50] Strekowski L, Mason C J, Lee H, et al. Synthesis of water-soluble near-infraredcyanine dyes functionalized with [(succinimido)oxy]carbonyl group[J]. J HeterocyclicChem.,2003,40(5):913-916.
[51] Kim J S, Kodagahally R, Strekowski L, et al. A study of intramolecular H-complexesof novel bis(heptamethine cyanine) dyes[J]. Talanta,2005,67(5):947-954.
[52] Choi H S, Gibbs S L, Lee J H, et al. Targeted zwitterionic near-infrared fluorophoresfor improved optical imaging[J]. Nat. Biotech.,2013,31(2):148-153.
[53] Luo S, Zhang E, Su Y, et al. A review of NIR dyes in cancer targeting and imaging[J].Biomaterials,2011,32(29):7127-7138.
[54] Zhang E, Luo S, Tan X, et al. Mechanistic study of IR-780dye as a potential tumortargeting and drug delivery agent[J]. Biomaterials,2014,35(2):771-778.
[55] Panigrahi M, Dash S, Patel S, et al. Syntheses of cyanines: a review[J]. Tetrahedron,2012,68(3):781-805.
[56] Guo Q, Luo S, Qi Q, et al. Peliminary structure-activity relationship study ofheptamethine indocyanine dyes for tumor-targeted imaging[J]. J Innov Opt Heal Sci,2013,6(13500031).
[57] Devos T, Thiessen S, Cuyle P J, et al. Long-term follow-up in a patient with thedermato-neuro syndrome treated with high-dose melphalan, thalidomide, andintravenous immunoglobulins for more than7years[J]. Ann Hematol,2014.
[58] Luo Z, Chang J, Guo Y, et al. Continuous infusion of5-FU with split-dose cisplatin:an effective treatment for advanced squamous-cell carcinoma of the head and neck[J].Clin Invest Med,2011,34(1): E8-E13.
[59] Tewey K M, Rowe T C, Yang L, et al. Adriamycin-induced DNA damage mediatedby mammalian DNA topoisomerase II[J]. Science,1984,226(4673):466-468.
[60] Low P S, Kularatne S A. Folate-targeted therapeutic and imaging agents for cancer[J].Curr Opin Chem Biol,2009,13(3):256-262.
[61] Siegel B A, Dehdashti F, Mutch D G, et al. Evaluation of111In-DTPA-folate as areceptor-targeted diagnostic agent for ovarian cancer: initial clinical results[J]. J NuclMed,2003,44(5):700-707.
[62] Muller C, Hohn A, Schubiger P A, et al. Preclinical evaluation of novelorganometallic99mTc-folate and99mTc-pteroate radiotracers for folatereceptor-positive tumour targeting[J]. Eur J Nucl Med Mol Imaging,2006,33(9):1007-1016.
[63] Eiber M, Takei T, Souvatzoglou M, Matthias Eiber, Toshiki Takei, Markus Schwaiger,and Ambros J. Beer. Performance of whole-body integrated18F-FDG PET/MR incomparison to PET/CT for evaluation of malignant bone lesions[J]. J Nucl Med,2014,55(2):191-197.
[64] Hashida M, Nishikawa M, Yamashita F, et al. Cell-specific delivery of genes withglycosylated carriers[J]. Adv Drug Deliv Rev,2001,52(3):187-196.
[65] Junutula J R, Raab H, Clark S, et al. Site-specific conjugation of a cytotoxic drug toan antibody improves the therapeutic index[J]. Nat Biotechnol,2008,26(8):925-932.
[66] Senter P D, Sievers E L. The discovery and development of brentuximab vedotin foruse in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma[J].Nat Biotechnol,2012,30(7):631-637.
[67] Junutula J R, Flagella K M, Graham R A, et al. Engineered thio-trastuzumab-DM1conjugate with an improved therapeutic index to target human epidermal growthfactor receptor2-positive breast cancer[J]. Clin Cancer Res,2010,16(19):4769-4778.
[68] Senter P D. Potent antibody drug conjugates for cancer therapy[J]. Curr Opin ChemBiol,2009,13(3):235-244.
[69] Wiseman G A, Witzig T E. Yttrium-90(90Y) ibritumomab tiuxetan (Zevalin) induceslong-term durable responses in patients with relapsed or refractory B-Cellnon-Hodgkin's lymphoma[J]. Cancer Biother Radiopharm,2005,20(2):185-188.
[70] Kaminski M S, Tuck M, Estes J, et al.131I-tositumomab therapy as initial treatmentfor follicular lymphoma[J]. N Engl J Med,2005,352(5):441-449.
[71] Sugahara K N, Teesalu T, Karmali P P, et al. Coadministration of a tumor-penetratingpeptide enhances the efficacy of cancer drugs[J]. Science,2010,328(5981):1031-1035.
[72] Morales A R, Yanez C O, Zhang Y, et al. Small molecule fluorophore and copolymerRGD peptide conjugates for ex vivo two-photon fluorescence tumor vasculatureimaging[J]. Biomaterials,2012,33(33):8477-8485.
[73] Shi J, Xiao Z, Kamaly N, et al. Self-assembled targeted nanoparticles: evolution oftechnologies and bench to bedside translation[J]. Acc Chem Res,2011,44(10):1123-1134.
[74] Mccarthy N. Running a MUC1[J]. Nat.Rev. Cancer,2012,12(5):317.
[75] Moore A, Medarova Z, Potthast A, et al. In vivo targeting of underglycosylatedMUC-1tumor antigen using a multimodal imaging probe[J]. Cancer Res,2004,64(5):1821-1827.
[76] Ray P, Viles K D, Soule E E, et al. Application of aptamers for targetedtherapeutics[J]. Arch Immunol Ther Ex,2013,61(4):255-271.
[77] Famulok M, Hartig J S, Mayer G. Functional aptamers and aptazymes inbiotechnology, diagnostics, and therapy[J]. Chem.Rev.,2007,107(9):3715-3743.
[78] Teicher B A, Chari R V. Antibody conjugate therapeutics: challenges and potential[J].Clin Cancer Res,2011,17(20):6389-6397.
[79] Vasir J K, Reddy M K, Labhasetwar V D. Nanosystems in drug targeting:Opportunities and challenges[J]. Curr Nanosci,2005,1(1):47-64.
[80] Anderson W M, Delinck D L, Benninger L, et al. Cytotoxic effect of thiacarbocyaninedyes on human colon carcinoma cells and inhibition of bovine heart mitochondrialNADH-ubiquinone reductase activity via a rotenone-type mechanism by two of thedyes[J]. Biochem Pharmacol,1993,45(3):691-696.
[81] Krieg M, Bilitz J M. Structurally modified trimethine thiacarbocyanine dyes. Effect ofN-alkyl substituents on antineoplastic behavior[J]. Biochem Pharmacol,1996,51(11):1461-1467.
[82] Youssif B G, Okuda K, Kadonosono T, et al. Development of a hypoxia-selectivenear-infrared fluorescent probe for non-invasive tumor imaging[J]. Chem Pharm Bull(Tokyo),2012,60(3):402-407.
[83] Oh M, Tanaka T, Kobayashi M, et al. Radio-copper-labeled Cu-ATSM: an indicatorof quiescent but clonogenic cells under mild hypoxia in a Lewis lung carcinomamodel[J]. Nucl Med Biol,2009,36(4):419-426.
[84]王理伟,王雷,李宁.临床肿瘤基因组学与肿瘤个体化治疗[J].临床肿瘤学杂志,2010(06):481-486.
[85]府伟灵,黄庆.肿瘤个体化治疗[J].重庆医学,2008(03):225-226.
[86] Xiong R, Soenen S J, Braeckmans K, et al. Towards theranostic multicompartmentmicrocapsules: in-situ diagnostics and laser-induced treatment[J]. Theranostics,2013,3(3):141-151.
[87] Kim T H, Lee S, Chen X. Nanotheranostics for personalized medicine[J]. Expert RevMol Diagn,2013,13(3):257-269.
[88] Haubold M, Wiemer M, Gessner T, et al. Integrated smart systems for theranosticapplications[J]. Biomed Tech (Berl),2013.
[1] Jemal A, Siegel R, Xu J, Ward E. Cancer statistics,2010. CA-Cancer J Clin2010;60(5):277-300.
[2] Greenlee RT, Murray T, Bolden S, Wingo PA. Cancer statistics,2000. CA-Cancer JClin2000;50(1):7-33.
[3] Fass L. Imaging and cancer: a review. Mol Oncol2008;2(2):115-52.
[4] Choy G, Choyke P, Libutti SK. Current advances in molecular imaging: noninvasivein vivo bioluminescent and fluorescent optical imaging in cancer research. MolImaging2003;2(4):303-12.
[5] Hilderbrand SA, Weissleder R. Near-infrared fluorescence: application to in vivomolecular imaging. Curr Opin Chem Biol2010;14(1):71-9.
[6] Nurunnabi M, Cho KJ, Choi JS, Huh KM, Lee Y-k. Targeted near-IR QDs-loadedmicelles for cancer therapy and imaging. Biomaterials2010;31(20):5436-44.
[7] Janib SM, Moses AS, MacKay JA. Imaging and drug delivery using theranosticnanoparticles. Adv Drug Deliver Rev2010;62(11):1052-63.
[8] Nel A, Xia T, M dler L, Li N. Toxic potential of materials at the nanolevel. Science2006;311(5761):622-7.
[9] Hoshino A, Hanada S, Yamamoto K. Toxicity of nanocrystal quantum dots: therelevance of surface modifications. Arch Toxicol2011:1-14.
[10] Alkilany AM, Nagaria PK, Hexel CR, Shaw TJ, Murphy CJ, Wyatt MD. Cellularuptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surfaceeffects. Small2009;5(6):701-8.
[11] Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T. Quantum dotsversus organic dyes as fluorescent labels. Nat Methods2008;5(9):763-75.
[12] Escobedo JO, Rusin O, Lim S, Strongin RM. NIR dyes for bioimaging applications.Curr Opin Chem Biol2010;14(1):64-70.
[13] Gon alves MST. Fluorescent labeling of biomolecules with organic probes. ChemRev2008;109(1):190-212.
[14] Mishra A, Behera RK, Behera PK, Mishra BK, Behera GB. Cyanines during the1990s: a review. Chem Rev2000;100(6):1973-2012.
[15] Ballou B, Ernst LA, Waggoner AS. Fluorescence imaging of tumors in vivo. CurrMed Chem2005;12(7):795-805.
[16] Lavis LD, Raines RT. Bright ideas for chemical biology. ACS Chem Biol2008;3(3):142-55.
[17] Kusano M, Tajima Y, Yamazaki K, Kato M, Watanabe M, Miwa M. Sentinel nodemapping guided by indocyanine green fluorescence imaging: a new method forsentinel node navigation surgery in gastrointestinal cancer. Digest Surg2008;25(2):103-8.
[18] Ishizawa T, Fukushima N, Shibahara J, Masuda K, Tamura S, Aoki T, et al. Real-timeidentification of liver cancers by using indocyanine green fluorescent imaging.Cancer2009;115(11):2491-504.
[19] Haughland RP. Molecular probes. Handbook of fluorescent probes and researchchemicals,9th ed. Molecular Probes Inc, Eugene, OR,2002.
[20] Górecki T, Patonay G, Strekowski L, Chin R, Salazar N. Synthesis of novelnear-infrared cyanine dyes for metal ion determination. J Heterocyclic Chem1996;33(6):1871-6.
[21] Patonay G, Antoine MD, Devanathan S, Strekowski L. Near-infrared probe fordetermination of solvent hydrophobicity. Appl Spectrosc1991;45(3):457-61.
[22] Strekowski L. Heterocyclic polymethine fyes: dynthesis, properties and applications.Springer, Berlin/Heidelberg,2008
[23] Chen X, Peng X, Cui A, Wang B, Wang L, Zhang R. Photostabilities of novelheptamethine3H-indolenine cyanine dyes with different N-substituents. J PhotochPhotobio A2006;181(1):79-85.
[24] Song F, Peng X, Lu E, Zhang R, Chen X, Song B. Syntheses, spectral properties andphotostabilities of novel water-soluble near-infrared cyanine dyes. J Photoch PhotobioA2004;168(1-2):53-7.
[25] Kovalska VB, Volkova KD, Losytskyy MY, Tolmachev OI, Balanda AO, YarmolukSM.6,6'-Disubstituted benzothiazole trimethine cyanines-new fluorescent dyes forDNA detection. Spectrochim Acta A Mol Biomol Spectrosc2006;65(2):271-7.
[26] Yarmoluk SM, Kovalska VB, Lukashov SS, Slominskii YL. Interaction of cyaninedyes with nucleic acids. XII.[beta]-substituted carbocyanines as possible fluorescentprobes for nucleic acids detection. Bioorg Med Chem Lett1999;9(12):1677-8.
[27] Peng X, Song F, Lu E, Wang Y, Zhou W, Fan J, et al. Heptamethine cyanine dyeswith a large stokes shift and strong fluorescence: a paradigm for excited-stateintramolecular charge transfer. J Am Chem Soc2005;127(12):4170-1.
[28] Zhou LC, Zhao GJ, Liu JF, Han KL, Wu YK, Peng XJ, et al. The charge transfermechanism and spectral properties of a near-infrared heptamethine cyanine dye inalcoholic and aprotic solvents. J Photoch Photobio A2007;187(2-3):305-10.
[29] Kim JS, Kodagahally R, Strekowski L, Patonay G. A study of intramolecularH-complexes of novel bis(heptamethine cyanine) dyes. Talanta2005;67(5):947-54.
[30] Gragg JL. Synthesis of near-infrared heptamethine cyanine dyes. Chemistry Theses.2010:28.
[31] Volkova KD, Kovalska VB, Tatarets AL, Patsenker LD.KryvorotenkoDV,Yarmoluk SM. Spectroscopic study of squaraines as protein-sensitive fluorescentdyes. Dyes Pigments2007;72(3):285-92.
[32] Gayathri Devi D, Cibin TR, Ramaiah D, Abraham A.Bis(3,5-diiodo-2,4,6-trihydroxyphenyl) squaraine: a novel candidate in photodynamictherapy for skin cancer models in vivo. J Photoch Photobio B2008;92(3):153-9.
[33] Umezawa K, Citterio D, Suzuki K. Water-soluble NIR fluorescent probes based onsquaraine and their application for protein labeling. Anal Sci2008;24(2):213-7.
[34] Nakazumi H, Ohta T, Etoh H, Uno T, Colyer CL, Hyodo Y, et al. Near-infraredluminescent bis-squaraine dyes linked by a thiophene or pyrene spacer fornoncovalent protein labeling. Synthetic Met2005;153(1-3):33-6.
[35] Gassensmith JJ, Baumes JM, Smith BD. Discovery and early development ofsquaraine rotaxanes. Chem Commun2009;(42):6329-38.
[36] de la Torre G, Claessens CG, Torres T. Phthalocyanines: old dyes, new materials.putting color in nanotechnology. Chem Commun2007;(20):2000-15.
[37] de la Torre G, Vázquez P, Agulló-López F, Torres T. Role of structural cactors in thenonlinear optical properties of phthalocyanines and related compounds. Chem Rev2004;104(9):3723-50.
[38] Tanaka Y, Shin J-Y, Osuka A. Facile synthesis of largemeso-pentafluorophenyl-substituted expanded porphyrins. Eur J Org Chem2008;2008(8):1341-9.
[39] Srinivasan A, Ishizuka T, Osuka A, Furuta H. Doubly N-confused hexaphyrin: anovel aromatic expanded porphyrin that complexes bis-metals in the core. J AmChem Soc2003;125(4):878-9.
[40] Xie YS, Yamaguchi K, Toganoh M, Uno H, Suzuki M, Mori S, et al. TriplyN-confused hexaphyrins: near-infrared luminescent dyes with a triangular shape.Angew Chem Int Edit2009;48(30):5496-9.
[41] Kuimova MK, Collins HA, Balaz M, Dahlstedt E, Levitt JA, Sergent N, et al.Photophysical properties and intracellular imaging of water-soluble porphyrin dimersfor two-photon excited photodynamic therapy. Org Biomol Chem2009;7(5):889-96.
[42] Nishiyama N, Jang W-D, Kataoka K. Supramolecular nanocarriers integrated withdendrimers encapsulating photosensitizers for effective photodynamic therapy andphotochemical gene delivery. New J Chem2007;31(7):1074-82.
[43] Celli JP, Spring BQ, Rizvi I, Evans CL, Samkoe KS, Verma S, et al. Imaging andphotodynamic therapy: mechanisms, monitoring, and optimization. Chem Rev2010;110(5):2795-838.
[44] Li W-S, Aida T. Dendrimer porphyrins and phthalocyanines. Chem Rev2009;109(11):6047-76.
[45] Brown SB, Brown EA, Walker I. The present and future role of photodynamictherapy in cancer treatment. Lancet Oncol2004;5(8):497-508.
[46] Killoran J, McDonnell SO, Gallagher JF, O'Shea DF. A substituted BF2-chelatedtetraarylazadipyrromethene as an intrinsic dual chemosensor in the650-850nmspectral range. New J Chem2008;32(3):483-9.
[47] Palma A, Tasior M, Frimannsson DO, Vu TT, Méallet-Renault R, O’Shea DF. Newon-bead near-infrared fluorophores and fluorescent sensor constructs. Org Lett2009;11(16):3638-41.
[48] Rickert EL, Oriana S, Hartman-Frey C, Long X, Webb TT, Nephew KP, et al.Synthesis and characterization of fluorescent4-hydroxytamoxifen conjugates withunique antiestrogenic properties. Bioconjugate Chem2010;21(5):903-10.
[49] Donuru VR, Zhu S, Green S, Liu H. Near-infrared emissive BODIPY polymeric andcopolymeric dyes. Polymer2010;51(23):5359-68.
[50] Loudet A, Burgess K. BODIPY dyes and their derivatives: syntheses andspectroscopic properties. Chem Rev2007;107(11):4891-932.
[51] Rurack K, Kollmannsberger M, Daub J. A highly efficient sensor molecule emittingin the near infrared (NIR):3,5-distyryl-8-(p-dimethylaminophenyl)difluoroboradiaza-s-indacene. New J Chem2001;25(2):289-92.
[52] Umezawa K, Matsui A, Nakamura Y, Citterio D, Suzuki K. Bright, color-tunablefluorescent dyes in the vis/NIR region: establishment of new “tailor-made” multicolorfluorophores based on borondipyrromethene. Chem–Eur J2009;15(5):1096-106.
[53] Killoran J, Allen L, Gallagher JF, Gallagher WM, O'Shea DF. Synthesis of BF2chelates of tetraarylazadipyrromethenes and evidence for their photodynamictherapeutic behavior. Chem Commun2002;(17):1862-3.
[54] Loudet A, Bandichhor R, Burgess K, Palma A, McDonnell SO, Hall MJ, et al.B,O-chelated azadipyrromethenes as near-IR probes. Org Lett2008;10(21):4771-4.
[55] Maeda H, Bharate GY, Daruwalla J. Polymeric drugs for efficient tumor-targeteddrug delivery based on EPR-effect. Eur J Pharm Biopharm2009;71(3):409-19.
[56] Liu T, Wu LY, Hopkins MR, Choi JK, Berkman CE. A targeted low molecular weightnear-infrared fluorescent probe for prostate cancer. Bioorg Med Chem Lett2010;20(23):7124-6.
[57] Chen Y, Dhara S, Banerjee SR, Byun Y, Pullambhatla M, Mease RC, et al. A lowmolecular weight PSMA-based fluorescent imaging agent for cancer. Biochem BiophRes Co2009;390(3):624-9.
[58] Levi J, Cheng Z, Gheysens O, Patel M, Chan CT, Wang Y, et al. Fluorescent fructosederivatives for imaging breast cancer cells. Bioconjugate Chem2007;18(3):628-34.
[59] Dasari M, Lee S, Sy J, Kim D, Lee S, Brown M, et al. Hoechst-IR: An imaging agentthat detects necrotic tissue in vivo by binding extracellular DNA. Org Lett2010;12(15):3300-3.
[60] Tung C-H, Lin Y, Moon WK, Weissleder R. A receptor-targeted near-infraredfluorescence probe for in vivo tumor imaging. ChemBioChem2002;3(8):784-6.
[61] Wang W, Ke S, Kwon S, Yallampalli S, Cameron AG, Adams KE, et al. A newoptical and nuclear dual-labeled imaging agent targeting interleukin11receptoralpha-chain. Bioconjugate Chem2007;18(2):397-402.
[62] Jin ZH, Josserand V, Foillard S, Boturyn D, Dumy P, Favrot MC, et al. In vivo opticalimaging of integrin αV-β3in mice using multivalent or monovalent cRGD targetingvectors. Mol Cancer2007;6:41.
[63] Carpenter RD, Andrei M, Aina OH, Lau EY, Lightstone FC, Liu R, et al. Selectivelytargeting T-and B-cell lymphomas: a benzothiazole antagonist of α4β1integrin. JMed Chem2008;52(1):14-9.
[64] Garanger E, Boturyn D, Jin Z, Dumy P, Favrot MC, Coll JL. New multifunctionalmolecular conjugate vector for targeting, imaging, and therapy of tumors. Mol Ther2005;12(6):1168-75.
[65] Achilefu S, Dorshow RB, Bugaj JE, Rajagopalan R. Novel receptor-targetedfluorescent contrast agents for in vivo tumor imaging. Invest Radiol2000;35(8):479-85.
[66] Becker A, Hessenius C, Licha K, Ebert B, Sukowski U, Semmler W, et al.Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands.Nat Biotechnol2001;19(4):327-31.
[67] Pham W, Medarova Z, Moore A. Synthesis and application of a water-solublenear-infrared dye for cancer detection using optical imaging. Bioconjugate Chem2005;16(3):735-40.
[68] Citrin D, Lee AK, Scott T, Sproull M, Ménard C, Tofilon PJ, et al. In vivo tumorimaging in mice with near-infrared labeled endostatin. Mol Cancer Ther2004;3(4):481-8.
[69] Ke S, Wen X, Gurfinkel M, Charnsangavej C, Wallace S, Sevick-Muraca EM, et al.Near-infrared optical imaging of epidermal growth factor receptor in breast cancerxenografts. Cancer Res2003;63(22):7870-5.
[70] Becker A, Riefke B, Ebert B, Sukowski U, Rinneberg H, Semmler W, et al.Macromolecular contrast agents for optical imaging of tumors: comparison ofindotricarbocyanine-labeled human serum albumin and transferrin. PhotochemPhotobiol2000;72(2):234-41.
[71] Petrovsky A, Schellenberger E, Josephson L, Weissleder R, Bogdanov A.Near-infrared fluorescent imaging of tumor apoptosis. Cancer Res2003;63(8):1936-42.
[72] Folli S, Westermann P, Braichotte D, Pelegrin A, Wagnieres G, van den Bergh H, etal. Antibody-indocyanin conjugates for immunophotodetection of human squamouscell carcinoma in nude mice. Cancer Res1994;54(10):2643-9.
[73] Ballou B, Fisher GW, Waggoner AS, Farkas DL, Reiland JM, Jaffe R, et al. Tumorlabeling in vivo using cyanine-conjugated monoclonal antibodies. Cancer ImmunolImmun1995;41(4):257-63.
[74] Soukos NS, Hamblin MR, Keel S, Fabian RL, Deutsch TF, Hasan T. Epidermalgrowth factor receptor-targeted immunophotodiagnosis and photoimmunotherapy oforal precancer in vivo. Cancer Res2001;61(11):4490-6.
[75] Rosenthal EL, Kulbersh BD, King T, Chaudhuri TR, Zinn KR. Use of fluorescentlabeled anti–epidermal growth factor receptor antibody to image head and necksquamous cell carcinoma xenografts. Mol Cancer Ther2007;6(4):1230-8.
[76] Ramjiawan B, Maiti P, Aftanas A, Kaplan H, Fast D, Mantsch HH, et al. Noninvasivelocalization of tumors by immunofluorescence imaging using a single chain Fvfragment of a human monoclonal antibody with broad cancer specificity. Cancer2000;89(5):1134-44.
[77] Ogawa M, Kosaka N, Choyke PL, Kobayashi H. In vivo molecular imaging of cancerwith a quenching near-infrared fluorescent probe using conjugates of monoclonalantibodies and indocyanine green. Cancer Res2009;69(4):1268-72.
[78] Louie A. Multimodality imaging probes: design and challenges. Chem Rev2010;110(5):3146-95.
[79] He X, Chen J, Wang K, Qin D, Tan W. Preparation of luminescent Cy5dopedcore-shell SFNPs and its application as a near-infrared fluorescent marker. Talanta2007;72(4):1519-26.
[80] Lee CH, Cheng SH, Wang YJ, Chen YC, Chen NT, Souris J, et al. Near-infraredmesoporous Silica nanoparticles for optical imaging: characterization and in vivobiodistribution. Adv Funct Mater2009;19(2):215-22.
[81] He X, Wu X, Wang K, Shi B, Hai L. Methylene blue-encapsulatedphosphonate-terminated silica nanoparticles for simultaneous in vivo imaging andphotodynamic therapy. Biomaterials2009;30(29):5601-9.
[82] Bendsoe N, Persson L, Johansson A, Axelsson J, Svensson J, Grafe S, et al.Fluorescence monitoring of a topically applied liposomal Temoporfin formulation andphotodynamic therapy of nonpigmented skin malignancies. J Environ Pathol ToxicolOncol2007;26(2):117-26.
[83] Derycke ASL, Kamuhabwa A, Gijsens A, Roskams T, De Vos D, Kasran A, et al.Transferrin-conjugated liposome targeting of photosensitizer AlPcS4to rat bladdercarcinoma cells. J Natl Cancer I2004;96(21):1620-30.
[84] Meerovich IG, Smirnova ZS, Oborotova NA, Luk’yanets EA, Meerovich GA,Derkacheva VM, et al. Hydroxyaluminium tetra-3-phenylthiophthalocyanine is a neweffective photosensitizer for photodynamic therapy and fluorescent diagnosis. B ExpBiol Med+2005;139(4):427-30.
[85] Rahmanzadeh R, Rai P, Celli JP, Rizvi I, Baron-Luhr B, Gerdes J, et al. Ki-67as amolecular target for therapy in an in vitro three-dimensional model for ovarian cancer.Cancer Res2010;70(22):9234-42.
[86] Lee S, Ryu JH, Park K, Lee A, Lee SY, Youn IC, et al. Polymeric nanoparticle-basedactivatable near-infrared nanosensor for protease determination in vivo. Nano Lett2009;9(12):4412-6.
[87] Kim K, Kim JH, Park H, Kim YS, Park K, Nam H, et al. Tumor-homingmultifunctional nanoparticles for cancer theragnosis: Simultaneous diagnosis, drugdelivery, and therapeutic monitoring. J Control Release2010;146(2):219-27.
[88] Masotti A, Vicennati P, Boschi F, Calderan L, Sbarbati A, Ortaggi G. A novelnear-infrared indocyanine dye polyethylenimine conjugate allows DNA deliveryimaging in vivo. Bioconjugate Chem2008;19(5):983-7.
[89] Ghoroghchian PP, Frail PR, Susumu K, Blessington D, Brannan AK, Chance B,Therien MJ, et al. Near-infrared-emissive polymersomes: self-assembled soft matterfor in vivo optical imaging. P Natl Acad Sci USA2005;102:2922-7.
[90] Alt nog lu EI, Russin TJ, Kaiser JM, Barth BM, Eklund PC, Kester M, et al.Near-infrared emitting cluorophore-doped calcium phosphate nanoparticles for invivo imaging of human breast cancer. ACS Nano2008;2(10):2075-84.
[91] Rao J. Shedding light on tumors using nanoparticles. ACS Nano2008;2(10):1984-6.
[92] Backer MV, Gaynutdinov TI, Patel V, Bandyopadhyaya AK, Thirumamagal BTS,Tjarks W, et al. Vascular endothelial growth factor selectively targets boronateddendrimers to tumor vasculature. Mol Cancer Ther2005;4(9):1423-9.
[93] Song L, Li H, Sunar U, Chen J, Corbin I, Yodh AG, et al.Naphthalocyanine-reconstituted LDL nanoparticles for in vivo cancer imaging andtreatment. Int J Nanomedicine2007;2(4):767-74.
[94] Zheng G, Li H, Yang K, Blessington D, Licha K, Lund-Katz S, et al. Tricarbocyaninecholesteryl laurates labeled LDL: new near infrared fluorescent probes (NIRFs) formonitoring tumors and gene therapy of familial hypercholesterolemia. Bioorg MedChem Lett2002;12(11):1485-8.
[95] Li H, Zhang Z, Blessington D, Nelson DS, Zhou R, Lund-Katz S, et al. Carbocyaninelabeled LDL for optical imaging of tumors1. Acad Radiol2004;11(6):669-77.
[96] Chen J, Corbin IR, Li H, Cao W, Glickson JD, Zheng G. Ligand conjugatedlow-density lipoprotein nanoparticles for enhanced optical cancer imaging in vivo. JAm Chem Soc2007;129(18):5798-9.
[97] Rao J, Dragulescu-Andrasi A, Yao H. Fluorescence imaging in vivo: recent advances.Curr Opin Biotech2007;18(1):17-25.
[98] Bremer C, Tung CH, Weissleder R. In vivo molecular target assessment of matrixmetalloproteinase inhibition. Nat Med2001;7(6):743-8.
[99] Tung C-H, Mahmood U, Bredow S, Weissleder R. In vivo imaging of proteolyticenzyme activity using a novel molecular reporter. Cancer Res2000;60(17):4953-8.
[100] Kobayashi H, Ogawa M, Alford R, Choyke PL, Urano Y. New strategies forfluorescent probe design in medical diagnostic imaging. Chem Rev2009;110(5):2620-40.
[101] Wang R, Yu C, Yu F, Chen L. Molecular fluorescent probes for monitoring pHchanges in living cells. Trac-Trend Anal Chem2010;29(9):1004-13.
[102] Urano Y, Asanuma D, Hama Y, Koyama Y, Barrett T, Kamiya M, et al. Selectivemolecular imaging of viable cancer cells with pH-activatable fluorescence probes. NatMed2009;15(1):104-9.
[103] Povrozin YA, Markova LI, Tatarets AL, Sidorov VI, Terpetschnig EA, Patsenker LD.Near-infrared, dual-ratiometric fluorescent label for measurement of pH. AnalBiochem2009;390(2):136-40.
[104] Lee H, Akers W, Bhushan K, Bloch S, Sudlow G, Tang R, et al. Near-infraredpH-activatable fluorescent probes for imaging primary and mtastatic breast tumors.Bioconjugate Chem2011;22(4):777-84.
[105] Jain RK. Barriers to drug delivery in solid tumors. Sci Am1994;271(1):58-65.
[106] Goldsmith SJ. Receptor imaging: Competitive or complementary to antibody imaging?Semin Nucl Med1997;27(2):85-93.
[107] Nie S. Understanding and overcoming major barriers in cancer nanomedicine.Nanomedicine-UK2010;5(1):523-8.
[108] Zhang C, Liu T, Su Y, Luo S, Zhu Y, Tan X, et al. A near-infrared fluorescentheptamethine indocyanine dye with preferential tumor accumulation for in vivoimaging. Biomaterials2010;31(25):6612-7.
[109] Shi C, Zhang C, Su Y, Cheng T. Cyanine dyes in optical imaging of tumours. LancetOncol2010;11(9):815-6.
[110] Yang X, Shi C, Tong R, Qian W, Zhau HE, Wang R, et al. Near IR heptamethinecyanine dye–mediated cancer imaging. Clin Cancer Res2010;16(10):2833-44.
[111] Trivedi ER, Harney AS, Olive MB, Podgorski I, Moin K, Sloane BF, et al. Chiralporphyrazine near-IR optical imaging agent exhibiting preferential tumoraccumulation. P Natl Acad Sci U S A2010;107(4):1284-8.
[112] Chen LB. Mitochondrial membrane potential in living cells. Annu Rev Cell Biol1988;4:155-81.
[113] Zhang E, Zhang C, Su Y, Cheng T, Shi C. Newly developed strategies formultifunctional mitochondria-targeted agents in cancer therapy. Drug Discov Today2011;16(3-4):140-6.
[114] Catia Marzolini, Rommel G Tirona, Richard B Kim. Pharmacogenomics of the OATPand OAT families. Pharmacogenomics2004;5(3):273-282
[115] Trivedi ER, Lee S, Zong H, Blumenfeld CM, Barrett AGM, Hoffman BM. Synthesisof heteroatom substituted naphthoporphyrazine derivatives with near-infraredabsorption and emission. J Org Chem2010;75(5):1799-802.
[116] Song Y, Zong H, Trivedi ER, Vesper BJ, Waters EA, Barrett AGM, et al. Synthesisand characterization of new porphyrazine-Gd(III) conjugates as multimodal MRcontrast agents. Bioconjugate Chem2010;21(12):2267-75.
[117] Josephson L, Kircher MF, Mahmood U, Tang Y, Weissleder R. Near-infraredfluorescent nanoparticles as combined MR/optical imaging probes. BioconjugateChem2002;13(3):554-60.
[118] Cai W, Chen K, Li ZB, Gambhir SS, Chen X. Dual-function probe for PET andnear-infrared fluorescence imaging of tumor vasculature. J Nucl Med2007;48(11):1862-70.
[119] McCann CM, Waterman P, Figueiredo JL, Aikawa E, Weissleder R, Chen JW.Combined magnetic resonance and fluorescence imaging of the living mouse brainreveals glioma response to chemotherapy. Neuroimage2009;45(2):360-9.
[120] Lampidis TJ, Salet C, Moreno G, Chen LB. Effects of the mitochondrial proberhodamine123and related analogs on the function and viability of pulsatingmyocardial cells in culture. Inflamm Res1984;14(5):751-7.
[121] Mojzisova H, Bonneau S, Brault D. Structural and physico-chemical determinants ofthe interactions of macrocyclic photosensitizers with cells. Eur Biophys J2007;36(8):943-53.
本文关键词:七甲川花菁类荧光小分子IR-780衍生物的合成、鉴定及其用于肿瘤靶向显影与治疗的实验研究,由笔耕文化传播整理发布。
本文编号:174768
本文链接:https://www.wllwen.com/yixuelunwen/zlx/174768.html