股骨远端套接式翻修假体的生物力学研究及临床应用
本文选题:生物力学 + 保肢 ; 参考:《山东大学》2017年硕士论文
【摘要】:目的:分析骨肿瘤保肢术后定制肿瘤型膝关节假体翻修原因,介绍一种适用于定制肿瘤假体髓外柄断裂翻修的新的、简单有效的翻修方法,即股骨远端套接式翻修 SPRS(Socket-type prosthetic revision system,SPRS)假体。通过体外模拟机械测试生物力学实验方法,评价SPRS假体不同长度套接部分的生物力学稳定性,初步确定有效套接固定长度、评价临床应用效果,为其临床推广应用提供理论依据。方法:模拟制作SPRS假体套接部分实验标本共6套,并按固定长度分成6组;采用目前临床常规应用国产骨水泥及特制的尖头挤压螺钉将其重复套接、固定3次,微机控制电子万能实验机分别进行生物力学测试;计算机自带软件自动收集数据、分析各方向的位移变化及转角变化,统计软件对实验数据进行分析,以此反映其套接部分的生物力学稳定性,确定其最短有效固定长度;回顾性分析临床上应用SPRS假体行有限翻修手术的病例,评价其应用效果。2005年8月-2015年11月期间,本科室收治了 2例采用定制肿瘤型膝关节假体置换保肢术后发生股骨远端假体髓外柄断裂的患者。男1例,女1例;年龄分别为25岁、51岁。原发肿瘤部位均为膝关节股骨远端,病理学确诊为骨肉瘤、复发性骨巨细胞瘤。术后发现假体断裂的时间分别为11个月、34个月,均无明显外伤史、日常活动时发生断裂。假体髓外柄发生断裂部位均位于髓内柄与髓外柄结合部,且发现髓内柄均固定牢固、无松动。基于其发生断裂后的特点,未按常规肿瘤假体翻修手术取出原假体髓内柄,而选用本科室自行研制的SPRS假体行有限翻修手术,将SPRS假体套筒部分套接于原假体残留的髓外柄,骨水泥及4排尖头挤压螺钉固定,视术中情况,必要时更换相应的配件、完成翻修手术。术后患者早期进行患肢功能锻炼,定期随访、观察SPRS假体稳定性及肢体功能恢复情况。结果:在2500N静态轴向拉伸(压缩)载荷及16N.m静态水平扭转载荷下SPRS假体不同长度的套接部分(10mm、20mm、30mm、40mm、50mm、70mm),产生平均最大拉伸(压缩)位移分别为(3.34±0.14)×10-1mm、(2.00±0.09)×10-1mm、(1.53±0.05)×10-1mm、(1.37±0.03)×10-1mm、(1.00±0.04)×10-1mm、(0.63±0.02)×10-1mm,平均拉伸(压缩)刚度分别为7.50±0.31(KN/mm)、12.49±0.56(KN/mm)、16.34±0.51(KN/mm)、18.28±0.44(KN/mm)、25.11 ±0.88(KN/mm)、39.51 ±0.94(KN/mm)组间比较差异有统计学意义(P0.05);产生平均最大扭转转角分别为3.20±0.11(deg)、2.69±0.11(deg)、1.62±0.03(deg)、1.07±0.02(deg)、0.90±0.02(deg)、0.45±0.01(deg),平均扭转刚度分别为 5.01 ±0.17(N.m/deg)、5.95±0.22(N.m/deg)、9.87±0.21(N.m/deg)、14.98±0.32(N.m/deg)、17.84±0.40(N.m/deg)、35.38±1.01(N.m/deg),组间比较差异有统计学意义(P0.05)。固定长度为30mm的标本,行跨距为10cm、载荷区间为120-1200N,300万次循环的三点弯曲疲劳试验后经超声波扫描检查发现未发生松动及破坏,其平均弯曲疲劳刚度为7.01 ±0.12KN/mm,产生的桡度为1.54×10-1mm;拉伸实验后经检测发现固定长度为10、20 mm的标本均自内侧金属-水泥界面发生明显骨水泥脱粘,平均最大位移分别为(3.34±0.14)×10-1mm、(2.00±0.09)×10-1mm;虽然结构未发生明显松动、螺钉把持力良好,但标本已发生非弹性形变,未满足实验要求,重新固定后行下一项测试。固定长度为10mm的标本平均最大转角为3.20±0.11(deg),大于实验规定参数、未满足实验要求;固定长度为30mm及以上的标本满足实验要求。本科室收治的应用改型假体行有限翻修手术的病例,术后分别随访26个月、128个月,影像学及专科查体均发现2例患者SPRS假体均固定牢固、无松动,末次随访时2例患者MSTS肢体功能评分分别为63.3%、83.7%。结论:固定长度为30mm、40mm、50mm、70mm的标本满足本实验要求、其各方向弹性刚度随固定长的增加而增大,能够为SPRS假体提供较好的套接固定稳定性,即髓外柄残端最短30mm为有效、稳定的固定长度。本研究中临床上运用SPRS假体行有限翻修手术病例髓外柄残端固定长度均为70mm,为安全、有效固定。骨肿瘤保肢术后假体断裂翻修的病例中,针对于股骨远端假体髓外柄断裂、髓内柄固定牢固,且髓外柄残端不少于30mm的病例,可选择应用SPRS假体行有限翻修手术。与传统翻修方法相比操作简单、手术创伤小、能有效避免相应并发症,有利于肢体功能早期恢复,虽然临床应用例数较少,最长近11年的随访证实了该假体的可靠性,值得临床进一步推广应用。
[Abstract]:Objective: to analyze the reasons for the revision of the custom tumor type knee prosthesis after the limb salvage of bone tumor, and introduce a new, simple and effective refurbishment method suitable for the refurbishment of the extramedullary stalk fracture of the custom tumor prosthesis, that is, the SPRS (Socket-type prosthetic revision system, SPRS) prosthesis of the distal femur refurbishment. The mechanical experimental method was used to evaluate the biomechanical stability of the SPRS prosthesis with different length socket parts, to determine the effective set length and evaluate the clinical application effect, and to provide the theoretical basis for its clinical application. Method: a total of 6 sets of experimental specimens of SPRS prosthesis were simulated and divided into 6 groups according to the fixed length. The conventional application of domestic bone cement and special pointed extrusion screw was repeated and fixed for 3 times. The computer controlled electronic universal experimental machine was tested for biomechanics respectively. The computer auto tape software collected data automatically and analyzed the change of displacement and angle of each direction. The statistical software analyzed the experimental data to reflect its connection. Part of the biomechanical stability and determination of the shortest effective fixed length; a retrospective analysis of the clinical application of SPRS prosthesis for limited refurbishment surgery and evaluation of its application effect in August,.2005, -2015 year, August, in the undergraduate room, which had been treated with customized tumor type knee prosthesis replacement for the extramedullary stem of the distal femoral prosthesis. The patients with fracture were 1 male and 1 female, 25 years old and 51 years old. The primary tumor site was the distal femur of the knee joint. The pathological diagnosis was osteosarcoma and recurrent giant cell tumor. The fracture time of the prosthesis was found to be 11 months and 34 months after operation. There was no obvious history of trauma and fracture in daily activities. Fracture of the prosthesis of the prosthesis was found. The intramedullary stalk was located in the combination of the intramedullary stalk and the extramedullary stalk, and found that the intramedullary stalk was firmly fixed and no loosening. Based on the characteristics of the fracture, the intramedullary stem of the original prosthesis was not removed according to the conventional tumor prosthesis, and the SPRS prosthesis developed by the undergraduate room was used for the limited refurbishment operation, and the SPRS prosthesis sleeve was connected to the remnant of the prothesis. The extramedullary handle, bone cement and 4 row of pointed extrusion screws were fixed, depending on the conditions, the necessary replacement parts and the refurbishment operation when necessary. After the operation, the patients underwent early limb function exercise, followed up regularly to observe the stability of SPRS prosthesis and the recovery of limb function. Results: static axial tension (compression) load and 16N.m static level torsion at 2500N Under load (10mm, 20mm, 30mm, 40mm, 50mm, 70mm), the average maximum tensile (compression) displacement of SPRS prosthesis is (3.34 + 0.14) x 10-1mm, (2 + 0.09) * 10-1mm, (1.53 + 0.05) x 10-1mm, (1.37 + 0.03) x 10-1mm, (1 + 0.04) * 10-1mm, (0.63 + 0.02) * *, and the average tensile (compression) stiffness is 7.50 + 0.31 respectively. /mm), the difference between 12.49 + 0.56 (KN/mm), 16.34 + 0.51 (KN/mm), 18.28 + 0.44 (KN/mm), 25.11 + 0.88 (KN/mm) and 39.51 + 0.94 (KN/mm) was statistically significant (P0.05), and the average maximum twisting angle was 3.20 + 0.11 (DEG), 2.69 + 0.11 (DEG), deg (DEG), DEG) The difference between 5.01 + 0.17 (N.m/deg), 5.95 + 0.22 (N.m/deg), 9.87 + 0.21 (N.m/deg), 14.98 + 0.32 (N.m/deg), 17.84 + 0.40 (N.m/deg) and 35.38 + 1.01 (N.m/deg) was statistically significant (P0.05). The fixed length was 30mm, the line span was 10cm, the load interval was 120-1200N, and the three bending fatigue test after 3 million cycles The average bending fatigue stiffness is 7.01 + 0.12KN/mm, and the radial degree is 1.54 x 10-1mm. After the tensile test, the specimens with fixed length of 10,20 mm have obvious bone cement debonding at the inner metal cement interface, and the average maximum displacement is (3.34 + 0.14) x 10-1mm, respectively. (2 + 0.09) x 10-1mm; although the structure has not been loosened obviously, the screw holding force is good, but the specimen has had inelastic deformation, it has not met the experimental requirements and refixed the next test. The average maximum angle of the specimen with a fixed length of 10mm is 3.20 + 0.11 (DEG), which is larger than the experimental parameters, and the fixed length is 30mm. 26 months, 128 months after operation, 2 cases of SPRS prosthesis were fixed firmly and no loosening, and the MSTS limb function score of 2 patients at the last follow-up was 63.3%, respectively, and 83.7%. conclusion: solid conclusion: solid conclusion: The specimens with fixed length of 30mm, 40mm, 50mm, and 70mm meet the requirements of this experiment. The elastic stiffness of each direction increases with the increase of the fixed length. It can provide a better fixation stability for the SPRS prosthesis, that is, the shortest 30mm of the extramedullary stalk is effective and the fixed length is stable. In this study, the SPRS prosthesis was used in the limited revision surgery cases. The fixed length of the remnant end of the extramedullary stalk is 70mm, which is safe and effective. In cases of prosthesis fracture repair after limb salvage, the needle for the fracture of the extramedullary stalk of the distal femoral prosthesis, the fixation of the intramedullary stalk firmly, and the remnant end of the extramedullary stalk of not less than 30mm, the SPRS false body can be selected for the limited revision operation. Simple, small surgical trauma, can effectively avoid the corresponding complications, is conducive to the early recovery of limb function, although the number of clinical applications is less, the last 11 years of follow-up confirmed the reliability of the prosthesis, worthy of further clinical application.
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R738
【相似文献】
相关期刊论文 前10条
1 刘建华,邹伟民,谢伟坚;成人股骨远端关节内骨折的手术治疗[J];咸宁医学院学报;2000年04期
2 陈桂华 ,卜波 ,陈伟强;股骨远端C型骨折18例手术治疗[J];广西医学;2001年06期
3 李步云;汪凤英;徐元勋;张燕;杜孝琴;鲍广全;;手术治疗股骨远端C型骨折疗效观察[J];实用医院临床杂志;2006年06期
4 陈东;孙玉强;曾炳芳;;股骨逆行交锁髓内钉钉治疗股骨远端C型骨折[J];中国临床医学;2006年05期
5 马小军;;合并—不合并股骨髁间髁上骨折股骨远端髁冠状面骨折[J];中国实用医药;2007年06期
6 叶小雨;林初勇;沈新升;;股骨逆行交锁髓内钉治疗股骨远端C型骨折[J];临床骨科杂志;2009年03期
7 宣懂;;不同手术方式治疗股骨远端C型骨折的临床分析[J];中国医药指南;2012年30期
8 李军;李阳;荆珏华;李虎;王健;史占军;;华南地区正常成人股骨远端髁扭转角测量及其临床意义[J];中华关节外科杂志(电子版);2013年03期
9 贾刚田;;类固醇导致的股骨远端骨髁无菌性坏死(附10例18个膝关节的研究)[J];宁夏医学杂志;1987年06期
10 白振明;;儿童股骨远端撕脱性皮质不规则改变[J];国外医学(临床放射学分册);1989年05期
相关会议论文 前10条
1 刘建华;邹伟民;谢伟坚;;中西医结合治疗成人股骨远端关节内骨折[A];第九次全国中西医结合创伤骨科学术大会论文汇编[C];2001年
2 王磊;安智全;罗从风;;绝经后妇女股骨远端B型骨折的手术治疗[A];第一届长三角地区创伤学术会议论文汇编[C];2008年
3 班吉鹤;马玉海;徐阿炳;钱锦峰;;锁定钢板治疗股骨远端C型骨折失败的相关原因分析[A];2013中国工程院科技论坛暨浙江省骨科学学术年会论文摘要集[C];2013年
4 范颂鸣;陈瑞光;叶伟雄;李爱国;王文;莫子丹;董飞;梁伟国;;老年股骨远端脆性骨折的早期手术治疗[A];第20届中国康协肢残康复学术年会论文选集[C];2011年
5 赵钢生;陈红卫;陈洵其;吴汝平;金国华;陈欣;赵胜春;楼舒畅;赵品益;王子阳;;反向股骨远端锁定髁钢板微创治疗股骨转子部骨质疏松骨折[A];浙江省医学会骨科学分会30年庆典暨2011年浙江省骨科学学术年会论文汇编[C];2011年
6 薛建维;蒲放;孙联文;樊瑜波;李德玉;李展;王颖;;前庭破坏对尾吊大鼠股骨远端松质骨的影响[A];第九届全国生物力学学术会议论文汇编[C];2009年
7 徐红伟;贾少华;张中伟;;国产对侧股骨远端锁定钢板治疗骨质疏松患者髋部骨折的临床应用[A];2013中国工程院科技论坛暨浙江省骨科学学术年会论文摘要集[C];2013年
8 张中伟;徐红伟;;对侧股骨远端锁定钢板治疗骨质疏松患者髋部骨折的临床应用[A];2012年浙江省骨质疏松与骨矿盐疾病学术年会暨《骨质疏松症诊治进展》专题研讨班论文集[C];2012年
9 付中国;张殿英;姜保国;王天兵;徐海林;武京伟;熊建;;股骨远端骨折手术治疗的回顾性研究[A];第七届全国创伤学术会议暨2009海峡两岸创伤医学论坛论文汇编[C];2009年
10 陈茂西;汤志鹏;;双钢板治疗股骨远端粉碎骨折[A];浙江省中西医结合学会骨伤科专业委员会第十一次学术年会暨省级继续教育学习班论文汇编[C];2005年
相关博士学位论文 前4条
1 张斌;现代骨科康复观指导下的新型股骨远端前外侧入路的探索与实践[D];南昌大学医学院;2013年
2 姬振伟;犬股骨远端微波原位灭活后再生能力的观察研究及其生物力学性能变化的初探[D];第四军医大学;2012年
3 郝廷;股骨远端LISS钢板固定系统数字解剖、有限元分析及临床对照[D];南方医科大学;2012年
4 李宏宇;骨水泥阻塞骨干髓腔后远侧骨干骨内压和血流改变及其防治方法的实验研究[D];重庆医科大学;2003年
相关硕士学位论文 前10条
1 姚子龙;股骨远端肿瘤手术重建方式的生物力学研究[D];南方医科大学;2015年
2 刘振;Mimics技术模拟DDH患者膝关节置换股骨远端截骨及形态学分析[D];吉林大学;2016年
3 陈海铭;不同固定方式治疗股骨远端C1型骨折的生物力学研究[D];广西医科大学;2016年
4 塔里甫江·帕拉提;股骨远端套接式翻修假体的生物力学研究及临床应用[D];山东大学;2017年
5 黄美贤;股骨远端的三维测量与性别差异化股骨假体的改进分析[D];南方医科大学;2008年
6 金京日;探讨髌骨纵行截骨入路在股骨远端C型骨折治疗中的应用及临床疗效[D];延边大学;2011年
7 李梁;国人股骨远端形态的测量及其在全膝关节置换与假体设计中的意义[D];第二军医大学;2012年
8 岳德波;北方地区成人股骨远端旋转角度测量及在人工全膝关节置换术中的应用[D];中国协和医科大学;2007年
9 宋兵华;国人胫骨平台内翻角及股骨远端旋转对线的影像学研究及其临床意义[D];苏州大学;2008年
10 骆松;新型股骨远端前外侧入路治疗股骨远端C型骨折的解剖学及临床应用研究[D];南昌大学;2014年
,本文编号:2105267
本文链接:https://www.wllwen.com/yixuelunwen/zlx/2105267.html