可选择性捕获循环肿瘤细胞的三维聚合物软链的初步探索
[Abstract]:Malignant tumor is a serious disease. About 8 million 200 thousand people die of cancer every year. The gold standard in the field of cancer detection is "biopsy", and the detection of circulating tumor cells (CTC) can be used as a "liquid biopsy" part to replace the traditional method to achieve non-invasive and rapid detection of cancer. However, CTC is in the blood. There are few 1~100 in about 1 billion blood cells, so the capture and enrichment of CTC is very challenging. Many methods have emerged in the field of CTC enrichment and detection. Research has shown that nanostructures help to improve the detection of CTC. And compared to inorganic nanomaterials, the flexible organic nanostructures are to CTC Therefore, based on the previous experience, in order to further improve the capture efficiency, we have prepared a three dimensional polymer soft chain platform with the potential to capture CTC. In order to realize the preparation of the three-dimensional soft chain platform with high efficiency to capture CTC, this topic first uses electrochemistry to induce the surface of the free radical polymerization of atomic transfer. The ATRP initiator and molecular polymerization with anti non specific adhesion ability are deposited on the surface of the conductive medium, and then the three-dimensional molecular soft chain with the ability of biofunctionalization and anti non specific adhesion is prepared by the method of surface initiation ATRP. The capture platform obtained by this method has good anti non specificity. Adhesion ability can control the ultimate capture ability by controlling the molecular chain density, molecular chain length and the component of biotin functionalized monomers. In theory, it has the potential of controllable high efficiency and specificity to capture CTC. The specific realization method of the capture platform is as follows. This subject uses bromo isobutylyl bromide and hydroxylated 3,4- ethylene two oxygen thiophene (e Dot-oh) occurrence of elimination reaction, synthesis of two oxygen thiophene (EDOT) derivative (edot-br) containing the ability of surface induced ATRP, and the chemical structure of the ATRP initiator on this surface was determined by NMR spectroscopy. In this study, a monomer with the ability to resist nonspecific adhesion (EDOT derivatives containing phosphoric acid choline) was synthesized by the two step method. Biological). The first step is to produce edot-cop by the elimination reaction between edot-oh and 2- chloro -2- oxygen -1,3,2- two oxycyclopentane (COP); the second step using the open ring addition reaction of edot-cop and trimethylamine, and finally obtaining edot-pc. through nuclear magnetic resonance spectroscopy to analyze edot-pc, determine the chemical structure of the molecule, and prove it is excellent. By adding lithium perchlorate as doping ion in acetonitrile, adding sodium succinate two octyl sulfonate (DSS) to promote the solubility of edot-pc, the stable copolymerization of edot-br and edot-pc was finally deposited on the conductive substrate, and the characterization of the co deposition film was characterized by X ray photoelectron spectroscopy (XPS). The subject has successfully copolymerized the edot-br and edot-pc onto the conductive substrate and can control the density of the initiator on the conductive substrate by adjusting the content of edot-br in the solution. Through the atomic force microscope, the polymer film with low surface roughness can be obtained by cyclic voltammetry. Through the contact angle table, the surface of the polymer film can be obtained by the electrochemical polymerization of the cyclic voltammetry. It is proved that the hydrophilicity of the polymer membrane can be well controlled by adjusting the content of edot-pc in the polymer. Two kinds of biotin functionalized monomers M-Biotin and Hema-Biotin are synthesized, and on this basis, the ATRP copolymerization of M-Biotin/ Hema-Biotin and MPC is explored by the surface of the conductive polymer. On the surface of ATRP copolymerization, three different catalyst systems are tried: one is CuBr/ bipyridine (bpy), one is CuBr2/bpy/ ascorbic acid (VC), and the other is CuBr2/ three (2- pyridyl) amine (TPMA) /VC. (TPMA) /VC. finally through QCM to characterize the coupling effect of molecular chain with streptomycin and model protein, and determines the CuBr2/TPMA/VC On the surface of this system, it has the best effect in ATRP polymerization. In addition, the molecular chain generated under this system also has excellent anti non specific adhesion ability. This ability is the prerequisite to further optimize the ability of molecular chain capture. In order to maximize the expression of antibody on the molecular chain, the subject further optimizes the density of the initiator. The composition and polymerization time (chain length) of a functionalized copolymerized monomer. The coupling ability of molecular chains to streptavidin was characterized by QCM, and the maximum of the molecular chain to the chain of streptomycin and model protein could be found under the condition that the density of the initiator was 10%, the content of the biotin functionalized monomers was 5%, and the polymerization time of ATRP was 6h. With the increase of the polymerization time, it is found that the hydrophilicity of the ATRP polymerized molecular brush increases slightly with the increase of the polymerization time. It will stabilize at about 10 degrees after the 6h, which proves that the system has a good hydrophilic property.
【学位授予单位】:东华大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:R730.4;O631
【相似文献】
相关期刊论文 前10条
1 华曼,陈明清,刘晓亚,杨成;ATRP法制备两亲性嵌段共聚物的研究[J];高分子学报;2004年05期
2 刘春华;范保林;刘榛;;原子转移自由基聚合(ATRP)在二氧化硅表面接枝中的应用[J];高分子通报;2009年04期
3 南江琨;刘郁杨;钟瑶冰;;ATRP法制备水凝胶的研究进展[J];材料导报;2011年05期
4 岳玲,张晓宏,吴世康;一种在ATRP反应体系中常用引发组分——1-溴乙基苯的荧光光谱研究[J];高分子学报;2005年01期
5 苏辉辉;肖舒;戴林;何静;;ATRP法合成甲基丙烯酸羟丙酯[J];化学试剂;2012年09期
6 刘军东;刘郁杨;蔡勇;王海波;;ATRP与其他反应技术联用合成聚合物分子刷的研究进展[J];应用化工;2013年02期
7 李洋;李海英;迟继波;雷良才;;功能性甲基丙烯酸甲酯-甲基丙烯酸缩水甘油酯嵌段聚合物ATRP合成[J];应用化工;2013年02期
8 黄文艳;龚海丹;杨宏军;潘会立;蒋必彪;;ATRP合成线性苯乙烯-丙烯腈共聚物[J];塑料工业;2008年10期
9 周冰;刘子利;;氢氧根对苯乙烯和甲基丙烯酸甲酯ATRP悬浮共聚的影响[J];高分子通报;2008年06期
10 张磊;王春凤;陈奉娇;杜施鑫;周国伟;;电子转移活化再生催化剂原子转移自由基聚合(ARGET ATRP)的研究进展[J];化工新型材料;2012年07期
相关会议论文 前10条
1 王莹;于文志;杨柏;;液相ATRP法直接合成两亲性嵌段共聚物[A];2005年全国高分子学术论文报告会论文摘要集[C];2005年
2 吴极文;汤慧;武培怡;;扇形ATRP引发剂3,4,5-三(十二烷氧基)苄溴的合成[A];2009年全国高分子学术论文报告会论文摘要集(下册)[C];2009年
3 门永军;王乐莉;刘正平;;在分子尺度利用ATRP法制备玉米淀粉接枝聚甲基丙烯酸甲酯[A];2011年全国高分子学术论文报告会论文摘要集[C];2011年
4 柏良久;张丽芬;程振平;朱秀林;;碱存在下的铁盐催化AGET ATRP反应机理和动力学研究[A];2011年全国高分子学术论文报告会论文摘要集[C];2011年
5 张丽芬;程振平;;一种高效的铁盐催化的苯乙烯AGET ATRP[A];苏州市自然科学优秀学术论文汇编(2008-2009)[C];2010年
6 赵剑英;邱雪鹏;高连勋;;通过表面原子转移自由基聚合(ATRP)键合片基的方法[A];第三届全国微全分析系统学术会议论文集[C];2005年
7 李洁华;阳煈;谭东升;周立娟;傅强;谭鸿;;聚酯表面ATRP接枝聚乙二醇刷对蛋白吸附影响的研究[A];2009年全国高分子学术论文报告会论文摘要集(下册)[C];2009年
8 高龙成;易毅;潘其维;范星河;陈小芳;宛新华;周其凤;;基于乙烯基对苯二甲酸的单体的ATRP研究[A];2005年全国高分子学术论文报告会论文摘要集[C];2005年
9 徐文健;朱秀林;朱健;;侧链、端基含孕烷结构的聚合物的ATRP法合成及其表征[A];2005年全国高分子学术论文报告会论文摘要集[C];2005年
10 彭锦雯;;硅表面引发ATRP接枝亲水性聚合物刷的动力学研究[A];2007年全国高分子学术论文报告会论文摘要集(下册)[C];2007年
相关博士学位论文 前10条
1 蒋红娟;高效LRP体系的构建及大分子精密合成[D];苏州大学;2015年
2 李时伟;基于ATRP法的含氟丙烯酸酯对真丝和棉织物改性研究[D];苏州大学;2015年
3 张洪文;ATRP方法合成几种新型功能化聚合物的研究[D];吉林大学;2004年
4 刘啸天;酶促与ATRP方法结合制备新型功能聚合物的研究[D];吉林大学;2007年
5 龚行;ATRP法制备含大垂饰基的螺旋聚甲基丙烯酸酯的研究[D];湘潭大学;2011年
6 廖禄生;采用ATRP合成结构可控的天然橡胶接枝共聚物[D];海南大学;2013年
7 邢铁玲;水介质中丙烯酸酯系单体ATRP法接枝真丝的研究[D];苏州大学;2009年
8 彭锦雯;原子转移自由基聚合(ATRP)在多功能硅(100)表面改性材料制备中的应用[D];复旦大学;2005年
9 朱韵;基于ATRP法不同阳离子聚合物基因载体的构建及其性能研究[D];北京化工大学;2014年
10 李娜君;含偶氮苯基团的丙烯酸酯类单体的ATRP及其电光学性能研究[D];苏州大学;2007年
相关硕士学位论文 前10条
1 丁明强;液/液两相催化体系在AIRP过渡金属催化剂分离与回收中的应用[D];苏州大学;2015年
2 杜向阳;基于温敏性离子液体温控相分离催化AGET ATRP体系的构建[D];苏州大学;2015年
3 丁韶兰;高容量离子交换材料的制备及其性能研究[D];宁夏大学;2015年
4 庄志良;纤维素基材表面的ARGET ATRP接枝共聚改性研究[D];南京林业大学;2015年
5 刘露;ATRP法制备离子交换膜应用于扩散渗析和电渗析[D];合肥工业大学;2015年
6 杜凯迪;离子液体中ATRP法制备MCC-g-PDEAEMA的工艺研究[D];河北科技大学;2015年
7 程浩南;基于ATRP的纤维素纤维织物抗皱整理方法的适应性研究[D];西安工程大学;2015年
8 王倩云;AEO系温控配体在反相乳液丙烯酰胺R-ATRP反应中的研究[D];大连工业大学;2014年
9 潘齐超;可选择性捕获循环肿瘤细胞的三维聚合物软链的初步探索[D];东华大学;2016年
10 唐凡;天然高分子基体的ATRP法表面改性[D];苏州大学;2009年
,本文编号:2162398
本文链接:https://www.wllwen.com/yixuelunwen/zlx/2162398.html