血清小分子代谢产物与胃癌淋巴结转移状态的相关性研究
[Abstract]:Objective: To study the correlation between small molecular metabolites and lymph node metastases in patients with gastric cancer, and to study the mechanism of small molecular metabolites to predict lymph node metastasis in gastric cancer, and to establish a risk scoring model for predicting the metastasis of gastric cancer by using small molecule metabolites and clinicopathological data. Method: 1, LC-MS Analysis: using liquid chromatography mass spectrometry to analyze the metabolites of serum samples; 2, VEGF-C, VEGF-D content in serum samples were measured by ELISA; 3, the expression of VEGF-C, VEGF-D, and lymphatic density (LVD) in the para cancer tissue samples were detected by immunohistochemistry. 4, data analysis: using principal component analysis T test, support vector machine discriminant analysis and other statistical methods for data analysis to find the differential metabolites in the serum of patients with gastric cancer in group T1-2N1-3 and T3N0, and group the independent samples on the basis of the differential metabolites, and then using the t- test to compare the VEGF-C and D levels of the group after the independent sample grouping. And the lymph node density in the paracancerous tissue; single factor, multiple factor logic regression to select independent risk factors associated with lymph node metastasis; further combined with clinicopathological data and metabolites to establish a risk scoring model for predicting lymph node metastasis of gastric cancer. Results: 1. Part 1: in the metabolic group study of serum samples, from Peakview software In the serum total ion flow chart, the difference of.PCA score between groups was clearly observed. The results of.PCA score showed that the group T1-2N1-3 group was well separated from the T3N0 gastric cancer. The t test could screen out a total of 31 different metabolites between the T1-2N1-3 group and the T3N0 group, and the discriminant analysis was carried out by the support vector machine method. The weight value was selected to be 100. 3 kinds of metabolites were found. The results of cluster analysis showed that the 3 different metabolites could separate the t1-2n1-3 group and the T3N0 region from the second part of.2.: 3 different metabolites were used to cluster analysis of the other 35 independent samples, and the results of the difference between the t1-2n1-3 group and the T3N0 group were verified again. The results showed that the independent sample was independent. The VEGF-C and VEGF-D concentration of serum samples between group A and group B, B two were statistically significant (P value was 0.032,0.047), VEGF-C, VEGF-D expression, a group were significantly higher than that of B group, and lymphatic density in paracancerous tissue was significantly higher than that in group two; survival analysis was also significantly worse. The third part of.3.: age, sex, degree of differentiation, tumor size, and 3 different metabolites. The results show that age, phenylpyruvicacid, threoninyl-isoleucine are independent risk factors for lymph node metastasis of gastric cancer, and the risk scoring model for predicting lymph node metastasis of gastric cancer combined with sex and 2 kinds of metabolites is established. The model can separate the negative lymph node metastasis from the positive sample area. As the score increases, the percentage of lymph node metastasis positive cases also increases. As a diagnostic test, the model shows that compared with a single independent risk factor, the model can predict lymph node metastasis better than a single independent risk factor. Conclusion: 1. different types of lymph node metastasis can be predicted. Conclusion: 1. different lymphatic vessels can be used to predict lymph node metastasis. The metabolic products were different in the serum of patients with gastric cancer with metastatic state; 2. the differential metabolites screened by liquid chromatography mass spectrometry had a strong distinguishing ability for gastric cancer patients with different lymph node metastases; there was a certain correlation between the metabolites and lymph node metastasis; and 3. based on the difference of metabolic products to the other 35. After cluster analysis, the serum VEGF-C, D concentration level, VEGF-C, D expression and lymphatic density in the para cancerous tissue were different, and the difference was statistically significant. 4. the metabolites could promote the high expression of VEGF-C, D, promote the formation of lymphatic tube in the paracancerous tissues, and then promote the drenching. The high expression of VEGF-C and D resulted in the difference in the metabolites in the serum; 5. the logical regression results confirmed the age, Phenylpyruvic acid, Threoninyl-Isoleucine as 3 independent risk factors for lymph node metastasis of gastric cancer, and the risk score model for predicting lymph node metastasis of gastric cancer by the 3 risk factors It is an effective means to predict lymph node metastasis in clinical practice.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R735.2
【相似文献】
相关期刊论文 前10条
1 胡佳;王莉;;肾血管平滑肌脂肪瘤伴周围淋巴结转移1例[J];华西医学;2006年01期
2 张德贤;孙菊杰;蔡淑萍;;肾血管平滑肌脂肪瘤伴多处淋巴结转移1例报告[J];山东医药;2009年42期
3 夏作云;;试析乳腺浸润性微乳头状癌的病理学特征与淋巴结转移的关系[J];中外医学研究;2013年18期
4 杨成;新生血管和肿瘤的淋巴结转移[J];国外医学.口腔医学分册;1997年06期
5 付兴国,杨华,陈桂秋;男性乳腺浸润性导管癌伴淋巴结转移1例[J];中国实验诊断学;2000年06期
6 周志明,赵铮铮,刘永欣,王泽学;128例肺癌患者手术切除淋巴结转移分析[J];中国肺癌杂志;2001年02期
7 江珊;宋琳琳;张晓晓;詹维伟;;超声弹性成像技术预测甲状腺微小乳头状癌中央组淋巴结转移的价值[J];中华医学超声杂志(电子版);2014年05期
8 张真发,李军,尚文军,张林;临床Ⅰ期非小细胞肺癌淋巴结转移的影响因素及临床意义[J];中国肺癌杂志;2003年04期
9 郭晓静;陈凌;郎荣刚;范宇;付丽;;乳腺浸润性微乳头状癌的病理学特征与淋巴结转移的关系[J];中华病理学杂志;2006年01期
10 吴楠;刘亚庆;王绪凯;卢利;;舌癌术后多次复发与淋巴结转移1例[J];中国实用口腔科杂志;2011年12期
相关会议论文 前10条
1 刘一飞;田大宇;;影响进展期胃癌No.14淋巴结转移因素的分析[A];第9届全国胃癌学术会议暨第二届阳光长城肿瘤学术会议论文汇编[C];2014年
2 张玉晶;Oh JL;Whitman G;Iyengar P;Yu TK;Tereffe W;Woodward W;Perkins G;Buchholz TA;Strom EA.;;局部进展期乳腺癌临床显见的内乳淋巴结转移:发生率和局部控制[A];中华医学会放射肿瘤治疗学分会六届二次暨中国抗癌协会肿瘤放疗专业委员会二届二次学术会议论文集[C];2009年
3 付玉兰;黄惠玲;韩军;;宫颈癌术后淋巴结转移相关因素分析[A];中国抗癌协会妇科肿瘤专业委员会第七次全国学术会议论文汇编[C];2003年
4 李端树;张凌;渠宁;嵇庆海;;中央区淋巴结转移比例及阳性数目对于侧颈淋巴结转移预测作用的研究[A];2014第六届全国甲状腺肿瘤学术大会论文集[C];2014年
5 张逊;David I Watson;Justin R Bessell;;食管腺癌淋巴结转移与肿瘤侵及食管壁深度的关系和对生存率的影响[A];第四届中国肿瘤学术大会暨第五届海峡两岸肿瘤学术会议论文集[C];2006年
6 叶建华;叶再元;屠世良;;直肠癌淋巴结转移的相关因素分析[A];浙江省中西医结合学会第二届老年病专业委员会第一次年会学术论文集[C];2007年
7 石峰;秦昂;;~(125)I粒子治疗恶性淋巴结转移瘤临床观察[A];中华医学会第九次全国核医学学术会议论文摘要汇编[C];2011年
8 叶建华;叶再元;屠世良;;直肠癌淋巴结转移的相关因素分析[A];2008年浙江省肛肠外科学术年会暨继续教育培训班资料汇编[C];2008年
9 李福根;许绍发;刘志东;;淋巴结转移与肺癌预后关系的研究[A];中华医学会第六次全国胸心血管外科学术会议论文集(胸外科分册)[C];2006年
10 任宇鹏;徐惠绵;;胃癌淋巴结转移规律及其与生物学行为关系的研究[A];第四届中国肿瘤学术大会暨第五届海峡两岸肿瘤学术会议论文集[C];2006年
相关重要报纸文章 前2条
1 健康时报特约记者 程守勤;3分钟识别淋巴结转移[N];健康时报;2007年
2 衣晓峰 李华虹;根治胃癌须把握淋巴结转移规律[N];中国医药报;2005年
相关博士学位论文 前8条
1 韩啸天;宫颈癌淋巴结转移相关miRNA筛选及机制研究[D];复旦大学;2014年
2 周治国;基于计算智能和机器学习的胃癌淋巴结检测及淋巴结转移诊断方法研究[D];西安电子科技大学;2014年
3 丁文婧;子宫内膜癌淋巴结转移预测模型的初步建立[D];上海交通大学;2015年
4 戚晓通;食管鳞癌侵犯粘膜下层与淋巴结转移规律研究[D];南京医科大学;2016年
5 郭学光;CCL21/CCR7轴对肺腺癌A549细胞增殖、迁移、侵袭及淋巴结转移的影响研究[D];第三军医大学;2007年
6 郭晓静;乳腺浸润性微乳头状癌病理学特征的相关研究[D];天津医科大学;2007年
7 邵雁;甲状腺乳头状癌淋巴结转移的相关因素研究[D];浙江大学;2008年
8 李伟;胃癌淋巴结转移信号传导通路蛋白表达谱筛选和分析[D];吉林大学;2013年
相关硕士学位论文 前10条
1 徐刚;乳腺癌内乳淋巴结转移相关危险因素研究[D];苏州大学;2015年
2 何建;拖出式适形切除在低位直肠癌中的应用及相关因素分析[D];第二军医大学;2015年
3 高维鸽;术前外周血中性粒细胞与淋巴细胞比值测定与直肠癌预后的关系[D];新疆医科大学;2015年
4 毛智军;远端胃癌淋巴结转移规律的临床研究[D];延安大学;2016年
5 张猛;CD44、HIF-1α在胃癌中的表达及临床意义[D];广西医科大学;2016年
6 王福刚;进展期胃癌淋巴结转移规律对放疗靶区勾画的指导[D];济南大学;2016年
7 赵权权;直肠癌新辅助放化疗后淋巴结转移的相关研究[D];第二军医大学;2016年
8 杨雄雯;下叶肺癌患者上叶12区淋巴结转移规律及临床分析[D];南昌大学;2016年
9 王鹏;524例肺癌患者淋巴结转移影响因素及规律的研究[D];大连医科大学;2016年
10 徐冬冬;血清小分子代谢产物与胃癌淋巴结转移状态的相关性研究[D];吉林大学;2017年
,本文编号:2171875
本文链接:https://www.wllwen.com/yixuelunwen/zlx/2171875.html