内质网应激对蛋白酶体抑制剂诱导乳腺癌MCF-7细胞自噬的作用
[Abstract]:Objective: Breast cancer is a common malignant tumor, which not only has the characteristics of high recurrence rate, high metastasis rate and high mortality, but also has an increasing incidence year by year. Later radiotherapy, chemotherapy and targeted therapy are still indispensable parts of the comprehensive treatment of breast cancer, so exploring the mechanism of breast cancer cell tolerance to chemotherapy and developing new chemotherapeutic drugs have always been an important part of breast cancer research. Autophagy is a lysosome-mediated process of protein and organelle degradation in cells. Under normal conditions, autophagy is limited to the basic level, but in starvation and in and out of cells. Autophagy is activated under the stimulation of environmental changes. Although studies suggest that autophagy is closely related to endoplasmic reticulum stress, previous studies have been limited and have not yet studied the mechanism of autophagy. Inhibition of autophagy-related upstream endoplasmic reticulum stress signaling pathway enhances the cytotoxicity of proteasome inhibition on breast cancer MCF-7 cells. The preparation MG-132, autophagy inhibitor 3-MA and endoplasmic reticulum stress inhibitor Salubrinal were used as the experimental drugs. The experiment was divided into blank control group, MG-132 group, MG-132+3-MA group and MG-132+Salubrinal group. The effect of each group on the activity of MCF-7 cells was detected by MTT method, and the expression of autophagy-related protein LC3 was detected by Western blot. The levels of Bcl-2, Bax and Caspase-3, and the levels of endoplasmic reticulum stress-related proteins Grp-78, GADD153 and Caspase-12 were detected. The apoptosis of MCF-7 cells was detected by flow cytometry. The endoplasmic reticulum stress-related genes Grp-78, GAD153 and Caspase-12 were compared by RT-PCR. Results: 1MG-132 inhibited the activity of MCF-7 cells in a concentration-dependent manner with the increase of concentration and prolongation of action time. Sexual and time-dependent, the inhibitory effect of MG-132 concentration was less than that of 2.5 micromol/L, the inhibitory rate was 17.4%. When the concentration of MG-132 was 10 micromol/L and 40 micromol/L for 48 hours, the inhibitory rate reached 48.6% and 96.3%, respectively. The IC20 value of MG-132 at 48 hours was calculated by SPSS17.0 software. The inhibitory rate was 6.1% at 1 mmol/L for 48 hours, 46.2% at 10 mmol/L and 92.4% at 20 mmol/L for 48 hours, respectively. The IC5 value of 3-MA at 48 hours was about 1 mmol/L. Salubrina at low concentration was found to be a concentration-dependent inhibitory effect. When the concentration of Salubrinal was 40 micromol/L and 80 micromol/L for 48 hours, the inhibitory rates were 4.3% and 11.5%, respectively. When the concentration of Salubrinal was 40 micromol/L and 80 micromol/L for 48 hours, the inhibitory rates were 37.9% and 84.8%, respectively. It was found that the IC5 value of Salubrinal at 48 hours was about 5 micron. The results of chymotrypsin-like activity of ol/L.2 proteasome showed that MG-132 could inhibit the activity of proteasome in MCF-7 cells. The activity of proteasome in MCF-7 cells was inhibited by MG-132 at 3 h, the inhibition rate was 65%. The inhibition rate was the strongest at 48 h, which was time-dependent. The inhibition rate of proteasome activity was about 65% at 3 h, suggesting that the inhibition of proteasome activity first appeared, and then the inhibition of cell proliferation. 3-MA (1 mmol/L) enhanced the inhibition of MG-132 (2.5 micromol/L) on cell proliferation, and the inhibition increased with the prolongation of time. Salubrinal (5 micromol/L) enhanced the inhibitory effect of MG-132 on MCF-7 cells in a time-dependent manner. After 48 hours, the inhibitory effect was the most obvious. Compared with 3-MA, the inhibitory effect of Salubrinal (5 micromol/L) on the proliferation of MCF-7 cells was relatively weak, and the difference was the most obvious at 48 hours. 4MG-132 (2.5 micromol/L) could induce MCF-7 cells. 3-MA (1 mmol/L) and Sabrina (5 umol/L) enhanced MG-132-induced apoptosis and G2-phase cell arrest, the apoptosis rate increased to 23.3% and 24.7%, the percentage of G2-phase cells increased to 24.80% and 25.76%. 5 MG-132 (2.5 umol/L) induced autophagy and autophagy inhibition of MCF-7 cells. Preparation 3-MA (1mmol/L) significantly inhibited autophagy and inhibited the transformation of LC3-I to LC3-II. Salubrinal (5umol/L), an endoplasmic reticulum stress inhibitor, decreased the expression of LC3-I and inhibited the transformation of LC3-I to LC3-II, showing autophagy inhibition, but the effect was weaker than that of 3-MA.6, compared with MG-132 (2.5umol/L), and decreased the expression of 3-MA (1mmol/L) and Salubrinal (5umol/L). Anti-apoptotic protein Bcl-2, pro-apoptotic protein Bax and Caspase-3 were up-regulated, indicating a good enhancement of MG-132-induced apoptosis in MCF-7 cells. 7MG-132 (2.5 micromol/L) could induce endoplasmic reticulum stress in MCF-7 cells. Salubrinal (5 micromol/L), an endoplasmic reticulum stress inhibitor, could effectively inhibit this process at protein and m RNA levels. Similarly, 3-MA (1mmol/L) also showed a good inhibitory effect on endoplasmic reticulum stress, and had a significant inhibitory effect on the expression of protein and m RNA, but the effect was weaker than that of Salubrinal. Plasma reticulum stress signaling pathway can enhance the killing effect of proteasome inhibitor MG-132 on breast cancer MCF-7 cells.
【学位授予单位】:吉林大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:R737.9
【相似文献】
相关期刊论文 前10条
1 黄啸原;用“印度阅兵”形容乳腺癌合适吗?[J];诊断病理学杂志;2001年02期
2 张嘉庆,王殊,乔新民;乳腺癌的现状和远景[J];中华外科杂志;2002年03期
3 张维彬,汪波,石灵春;中医药在现代乳腺癌治疗中的运用[J];中国中西医结合急救杂志;2002年01期
4 薛志勇;食物与乳腺癌[J];山东食品科技;2002年04期
5 王旬果,王建军,郑国华;乳腺癌相关标志物的研究进展[J];山东医药;2002年33期
6 陆尚闻;;男人也患乳腺癌[J];环境;2003年12期
7 ;新技术清晰拍摄早期乳腺癌细胞[J];上海生物医学工程;2005年04期
8 田富国;郭向阳;张华一;;乳腺癌诊治研究新进展[J];肿瘤研究与临床;2005年S1期
9 马涛,谷俊朝;血管内皮生长因子与乳腺癌的临床研究进展[J];国外医学(外科学分册);2005年01期
10 郭庆良,谷俊朝;乳腺癌和瘦素相关性研究进展[J];国外医学.外科学分册;2005年03期
相关会议论文 前10条
1 于永利;;抗乳腺癌免疫治疗融合蛋白[A];中国免疫学会第四届学术大会会议议程及论文摘要集[C];2002年
2 郭红飞;;中医治疗乳腺癌的策略[A];江西省中医、中西医结合肿瘤学术交流会论文集[C];2012年
3 庞朋沙;伍会健;;乳腺癌治疗靶标的研究进展[A];北方遗传资源的保护与利用研讨会论文汇编[C];2010年
4 陆劲松;邵志敏;吴炅;韩企夏;沈镇宙;;新型维甲酸抑制乳腺癌细胞的生长及诱导凋亡的机制研究[A];2000全国肿瘤学术大会论文集[C];2000年
5 刘爱国;胡冰;;乳腺癌临床治疗进展[A];安徽省抗癌协会第四次代表大会暨乳腺癌、肺癌专业委员会成立会议、安徽省肿瘤防治进展学术研讨会论文汇编[C];2001年
6 张嘉庆;王殊;乔新民;;乳腺癌的现状和远景[A];第一届全国中西医结合乳腺疾病学术会议论文汇编[C];2002年
7 刘清俊;;乳腺癌综合治疗的新进展[A];山西省抗癌协会第六届肿瘤学术交流会论文汇编[C];2003年
8 邵志敏;;21世纪乳腺癌治疗的展望[A];第三届中国肿瘤学术大会教育论文集[C];2004年
9 陈松旺;张明;;乳腺癌治疗的回顾与展望[A];西部地区肿瘤学学术会议论文汇编[C];2004年
10 白霞;傅建新;丁凯阳;王兆钺;阮长耿;;组织因子途径抑制物-2在乳腺癌细胞中的表达研究[A];第10届全国实验血液学会议论文摘要汇编[C];2005年
相关重要报纸文章 前10条
1 ;血检有望揭示乳腺癌治疗效果[N];医药经济报;2004年
2 记者 郑晓春;乳腺癌细胞扩散基因被找到[N];科技日报;2007年
3 中国军事医学科学院肿瘤中心主任 宋三泰;乳腺癌有了新疗法[N];中国妇女报;2002年
4 王艳红;抑制DNA修补可消灭乳腺癌细胞[N];医药经济报;2005年
5 詹建;乳腺癌饮食 两个时期不一样[N];中国中医药报;2006年
6 辛君;乳腺癌扩散基因“浮出水面”[N];大众卫生报;2009年
7 记者 毛黎;美发现有效抑制乳腺癌细胞生长的分子[N];科技日报;2010年
8 记者 吴春燕 通讯员 王丽霞;乳腺癌治疗将有新途径[N];光明日报;2011年
9 王乐 沈基飞;我科学家发现导致乳腺癌耐药的新标志物[N];科技日报;2011年
10 刘霞;一种天然分子能阻止乳腺癌恶化[N];科技日报;2011年
相关博士学位论文 前10条
1 柴红燕;疾病状态下CYP4Z1和4A的生物学行为及其药物干预研究[D];武汉大学;2012年
2 李凯;ID(inhibitor of DNA binding)家族蛋白调控乳腺细胞的分化并影响乳腺癌的预后[D];复旦大学;2014年
3 江一舟;乳腺癌新辅助化疗前后基因变异检测及其功能论证[D];复旦大学;2014年
4 马邵;酪氨酸去磷酸化增强表皮生长因子受体在乳腺癌治疗中靶向性的研究[D];山东大学;2015年
5 姚若斯;精氨酸甲基转移酶PRMT7诱导乳腺癌细胞发生表皮—间质转换及转移的作用机制研究[D];东北师范大学;2015年
6 侯培锋;α-酮戊二酸二甲酯(DM-2KG)上调缺氧诱导因子-1α(HIF-1α)诱发高致瘤性干细胞样乳腺癌细胞机制研究[D];福建医科大学;2014年
7 李丽丽;分泌蛋白SHON调控乳腺癌细胞EMT的分子机制研究[D];东北师范大学;2015年
8 陈丽艳;PI3K抑制剂联合组蛋白去乙酰化酶抑制剂对乳腺癌协同杀伤作用的分子机制研究[D];延边大学;2015年
9 朴俊杰;乳腺癌差异基因筛选及PAIP1对其生物学行为的影响[D];延边大学;2015年
10 汪[?如;染色体6q25.1区域基因多态性与乳腺癌遗传易感性的关联研究[D];南方医科大学;2015年
相关硕士学位论文 前10条
1 杜文英;乳腺癌分子亚型的临床与病理特点[D];郑州大学;2011年
2 贾晓菲;彩色多普勒超声与乳腺癌病理及免疫组化指标的相关性研究[D];内蒙古大学;2015年
3 靳文;乳腺癌全基因组DNA甲基化修饰的研究[D];内蒙古大学;2015年
4 吴坤琳;TLR4/MyD88信号通路对乳腺癌侵袭性影响的实验研究[D];福建医科大学;2015年
5 葛广哲;树,
本文编号:2250476
本文链接:https://www.wllwen.com/yixuelunwen/zlx/2250476.html