基于介孔有机氧化硅的肿瘤多模式成像及其引导下的增效治疗
[Abstract]:Traditional methods of tumor therapy have limitations, such as the strong toxic and side effects of chemotherapy, and the spent oxygen environment in tumors also inhibits the effect of radiotherapy. The application of nano-materials in biomedicine provides a new method for diagnosis and treatment of tumor, which can combine multiple imaging methods with the treatment mode. "Integration of diagnosis and treatment" The combination of imaging and therapeutic capabilities with the same nanomaterials has been widely used in drug delivery tracing, treatment effectiveness monitoring, and imaging guided therapy. The mesoporous organic silicon oxide nano-particles have good dispersibility, uniform size, large specific surface area, biodegradability and high biocompatibility, and is an ideal carrier of the tumor diagnosis and treatment system. In this paper, a systematic study on the diagnosis and treatment of tumor diagnosis and treatment based on mesoporous organic silicon oxide is carried out, which mainly includes the following three aspects: 1. the mesoporous organic silicon oxide diagnosis and treatment integration system is used for constructing a periodic egg yolk-eggshell structure mesoporous organic silicon oxide (PMOP) based on a thioether bond for tumor target imaging and synergistic chemotherapy, The surface stably connects the near-infrared fluorescent molecule Cy5. 5 with the affinity body of the target human epidermal growth factor receptor-2 (Her2) so as to have the capability of near-infrared fluorescence imaging and targeting Her2 positive tumor cells. With the structure of the sulfide bond in the nano particle framework, the chemotherapy drug adriamycin (DOX) loaded in the cavity can be released in response to the action of glutathione (GSH) in the tumor cells. The amount of drug released within 24h of 10mM GSH solution can reach 84.8%, which is more than double the release amount under the condition of GSH-free stimulation. In addition, the release of drug in 24 h in neutral environment (pH 7.4) was 31.7% in neutral environment (pH 7.4), while the release amount of pH 5.0 was 53.6% in acidic environment (pH 5.0). Laser confocal scanning microscope and cell-flow analysis show that the diagnosis and treatment system can target Her2-positive tumor cells efficiently and can be taken up, thereby effectively killing tumor cells. At the same time, Cy5.5 has good near infrared fluorescence imaging capabilities to monitor the distribution, delivery, and release of intracellular drugs. At the same time, the cell experiment and pathological section of animal organ tissue show that the diagnosis and treatment integration system has good biocompatibility and lays a good foundation for the subsequent biological application. In summary, this study has developed a novel tumor cell targeting imaging and synergistic chemotherapy system with targeted tumor cells, near infrared fluorescence imaging, and GSH/ pH dual response drug release capabilities. secondly, the three-response degradable mesoporous organic silicon oxide thermal treatment integrated system is used for the combination therapy of hyperthermia and chemotherapy and chemotherapy, and the combination therapy can greatly improve the treatment effect of the tumor. This study suggested that the warming effect could enhance the efficacy of chemotherapy, and discussed the mechanism of synergistic treatment in vitro and in vivo tumor model. The invention discloses a novel biodegradable diagnosis and treatment integrated system based on a human body, a periodic egg yolk-eggshell structure and a mesoporous organic silicon oxide (CuS @ PMOs), which is used for photothermal conversion and drug delivery. The prepared CuS @ PMOP has strong chemotherapeutics DOX loading capacity, and the release of DOX is up to 470 mg/ g. The release of DOX can be controlled accurately by triple stimulation, including high concentration of GSH in tumor cells, acidic environment in tumor and external laser irradiation. The experimental results show that the hyperthermia produced by laser irradiation greatly improves the tumor cells in vitro and the uptake of nano-particles in body tumors, thus remarkably enhancing the curative effect of chemotherapy, and completely inhibiting the growth of the tumor. Meanwhile, the fluorescence imaging capability of DOX itself can be used to monitor drug delivery and release. Three, thermoresponsive perfluoropentane gasification is a key to solving the problem by finding a way to efficiently deliver oxygen to a tumor region due to a spent oxygen environment of a synergistic radiotherapy tumor for a spent oxygen tumor. Perfluoropentane (PFP) has a strong affinity for oxygen, the boiling point in the body is 40-50 DEG C, and a delivery system based on hydrogen cyanide, hollow mesoporous organic silicon oxide nanoparticles (HMON @ CuS) is constructed, and PFP (O2-PFP @ HMON @ CuS-PEG) carrying oxygen is delivered to the tumor area for synergistic radiotherapy of the spent oxygen tumor. The heat generated by the CuS after laser irradiation can cause the PFP to generate liquid-gas phase change, the generated bubbles can not only enhance the ultrasonic imaging signal, but also promote the rapid release of oxygen, promote the diffusion of oxygen in the spent oxygen tumor, The cell experiment proves that the method can greatly enhance the radiotherapy curative effect of the spent oxygen tumor cells. The distribution of nano-particles in mice can be observed by positron emission tomography (PET) imaging. The experimental results show that the nanoparticles have a long half-life of blood, and after 24 hours after intravenous injection, the peak is reached in the tumor area. and may continue to 48 h. Alternatively, the CuS also has an optical acoustic (PA) imaging capability. Therefore, under the stimulation of the near infrared laser, the integrated system of the diagnosis and treatment can realize the synergistic radiotherapy aiming at the spent oxygen tumor under the precise image guidance of the PET/ ultrasonic/ optical sound three modes, and has good clinical application prospect.
【学位授予单位】:南京大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:R730.5
【相似文献】
相关期刊论文 前10条
1 丁浩;喉内超声成像的临床评价[J];国外医学.耳鼻咽喉科学分册;2002年05期
2 周军;朱尚勇;;超声成像在喉部的应用[J];医学文选;2006年03期
3 王亚平;任超;;超声成像物理假定的适用性及局限性探讨[J];医疗设备信息;2007年04期
4 喻玲;王亚丽;胡建群;;不同年龄人群腰段脊柱超声成像的差异[J];南京医科大学学报(自然科学版);2011年08期
5 张龙龙;周浩;郑音飞;弓晓虹;王剑平;;基于平面波超声成像的自适应波束合成方法[J];生物医学工程学杂志;2013年04期
6 曹培杰,罗建,程敬之,朱霆;超声成像的相位偏差校正[J];国外医学.生物医学工程分册;1997年03期
7 李斌;李德来;杨金耀;张琼;;超声成像质量的评价因素及其改善方法[J];中国医疗器械信息;2014年04期
8 杨景涛,张秀梅,方风宇,吴和平,于新发;超声成像对骨质定量测定影响因素初探[J];中国骨质疏松杂志;2001年02期
9 ;至尊平台 全新体验——百胜推出魅力至尊平台超声成像设备[J];中国医疗器械信息;2006年07期
10 赵晓瑜;;全景超声成像原理及应用[J];中国社区医师(医学专业半月刊);2008年24期
相关会议论文 前10条
1 高上凯;杜亚军;;一种实用的扩展视野超声成像方法[A];2005年全国超声医学工程学术会议论文集[C];2005年
2 李洪林;李静;朱利;郝玉芝;周纯武;陈宇;黄苏里;牛丽娟;王勇;;乳腺超声成像与钼靶X线摄影的比较与联合应用[A];中华医学会超声医学新进展学术会议论文汇编[C];2004年
3 赵惠t$;钱超文;边晔萍;;全景超声成像在浅表软组织及小器官中的应用初探[A];中华医学会第六次全国超声医学学术年会论文汇编[C];2001年
4 周玉禄;程建政;张德俊;;信号冗余用于超声成像的相位校正[A];第九届全国超声医学学术会议论文汇编[C];2006年
5 周盛;王晓春;计建军;杨军;王延群;;医学高频超声成像中编码技术的研究[A];天津市生物医学工程学会第三十二届学术年会论文集[C];2012年
6 彭虎;Lu Jian yu;;超声成像新模型及其系统实现[A];中国生物医学工程进展——2007中国生物医学工程联合学术年会论文集(上册)[C];2007年
7 慕雪;李鸿燕;;二维及四维超声成像在探测胎儿嘴唇中的对比应用价值[A];中国超声医学工程学会第十一届全国超声医学学术大会论文汇编[C];2012年
8 宋瑞波;钱明;牛丽丽;郑海荣;;双层PVA-C血管仿体中生理流体的超声成像及测速研究[A];中国声学学会第九届青年学术会议论文集[C];2011年
9 张玲;符颖;陈晓旭;;彩色多频率超声成像对椎基底动脉病变的初步研究[A];中国超声医学工程学会第三次全国浅表器官及外周血管超声医学学术会议(高峰论坛)论文汇编[C];2011年
10 李洪林;郝玉芝;朱利;陈宇;黄苏里;牛丽娟;王勇;;乳腺良、恶性病变的超声分级诊断[A];中华医学会超声医学新进展学术会议论文汇编[C];2004年
相关重要报纸文章 前1条
1 冯卫东;一种新材料可提高超声成像质量[N];科技日报;2010年
相关博士学位论文 前8条
1 张琼;高分辨率平面波发射超声成像方法研究[D];中国科学技术大学;2012年
2 钱俊;可视化介入超声消融犬肾交感神经的实验研究[D];重庆医科大学;2015年
3 卢楠;基于介孔有机氧化硅的肿瘤多模式成像及其引导下的增效治疗[D];南京大学;2017年
4 郑驰超;超声测量骨密度及超声成像的若干方法的研究[D];中国科学技术大学;2010年
5 吴施伟;基于合成孔径的圆柱类部件在线超声成像理论与实践的研究[D];浙江大学;2015年
6 花少炎;基于压缩感知的医学超声成像算法研究[D];华中科技大学;2014年
7 李鹏;医学超声成像中若干新技术的研究与实现[D];浙江大学;2009年
8 曹军;舌大小超声测量系统的建立及舌大小与开(牙合)相关性研究[D];第四军医大学;2000年
相关硕士学位论文 前10条
1 刘婷婷;平面波超声成像中波束形成算法研究[D];浙江大学;2015年
2 向斌;基于孔径域数据的向量多普勒[D];深圳大学;2015年
3 李赛;基于通用心脏模型的序列超声成像仿真研究[D];东北大学;2014年
4 韩亭玉;基于压缩感知的超声成像快速实现方法研究[D];西安电子科技大学;2014年
5 彭娟;多功能纳米诊疗制剂的制备与应用研究[D];东华理工大学;2015年
6 杨知雨;环形焊缝复合式超声成像检测关键技术研究[D];浙江大学;2016年
7 陈羽;基于CT的超声成像模拟[D];东南大学;2015年
8 李鹏举;环形超声成像设备的硬件平台设计和实现[D];北京交通大学;2016年
9 尉明望;超快速超声成像方法研究及其CUDA实现[D];哈尔滨工业大学;2016年
10 吴轲娜;Topmetal像素传感芯片在超声成像中的应用研究[D];华中师范大学;2016年
,本文编号:2289854
本文链接:https://www.wllwen.com/yixuelunwen/zlx/2289854.html