高通量分析人食管鳞癌甲基化差异基因的相关研究
[Abstract]:Esophageal cancer is one of the most common malignant tumors in the world. The incidence of esophageal cancer is the eighth of the global tumor incidence, and the mortality rate is the sixth of the cancer-related mortality. The incidence of esophageal cancer in China is the first in the world, and it is an area of high incidence of esophageal squamous cell carcinoma (ESCC), accounting for about 70% of the world. In recent years, the incidence of ESCC has decreased, but the long-term prognosis of ESCC is still poor. The five-year survival rate of ESCC is only 15% ~ 25%. The abnormal changes of DNA methylation are considered one of the most common molecular mechanisms for the development of ESCC. The main features are the low methylation of the whole genome and the high methylation of the site-specific CpG island. It is of great significance to find out how to regulate and control the occurrence and development of ESCC, to find the change of molecular markers in ESCC methylation, and to guide people to judge the prognosis of ESCC and to develop effective treatment plan. In the first part of this paper, we used a simplified, representative DNA methylation sequencing (RRBS) and high-throughput analysis of gene expression profiles to analyze the level of DNA methylation and the level of mRNA expression in 7 ESCC patients and their adjacent tissues. The functional enrichment analysis of the differentially methylated genes of ESCC and its adjacent cancer is carried out. The main function of the differential gene is the molecular connection and regulation, the composition and regulation of the cells, the catalytic activity and the regulation of metabolism, etc. In addition, there is a great change in cell movement, material transport, and inter-cell interaction-related genes. Then, the DNA methylation of the promoter region and the gene expression level were negatively correlated with the results of the earlier expression spectrum chip. In order to screen the specific methylation change gene in the development of ESCC, the first ten genes with significant difference, combined with function and literature search, were selected to screen out the simultaneous expression of the reduced gene Cyclin Y-like l (CCNYL1). A cancer genomic map database (TCGA) was used to predict the absence of mutation, deletion and amplification in ESCC. Further, we validated the level of DNA methylation and the real-time PCR in the ESCC tissue using a vulcanization sequencing PCR (BSP) technique to verify the level of mRNA expression in the 10-to-frozen ESCC tissue, and the results were consistent with the results of the RRBS and the expression profile, and the CCNYL1 was highly methylated and low in the ESCC tissue. By statistical analysis, the CpG sites 13, the CpG sites 16, the CpG sites 17, the CpG sites 18, and the CpG sites 19 of the CCNYL1 gene DMR were hypermethylated in the ESCC. Compared with the immortalized cell line of human esophageal epithelium, the level of DNA methylation of CCNYL1 in the ESCC cell line was significantly increased and the level of mRNA expression was decreased. Then, the CCNYL1 gene is overexpressed in the ESCC cell strain by in vitro experiment, and the result shows that the CCNYL1 gene has the inhibition effect on the proliferation of the cancer cells. Finally, we used epigenetic therapy to reduce the level of DNA methylation in the promoter region of the CCNYL1 gene, and the expression of the mRNA was increased, indicating the direct regulation of the expression of the CCNYL1. In addition, that methylation level of the CpG sites 13,16,17 and 19 in the DMR is obviously reduce, and the molecular basis for tumor treatment is provided. Therefore, the high methylation of the CCNYL1 gene may be involved in the occurrence of ESCC, and its DMR may provide a new target for tumor therapy. In the second part of this paper, there was a negative correlation between the degree of methylation and the level of expression in the lymph node metastasis of the ESCC and the level of expression of the non-lymph node metastasis group in the early stage of screening, and the DMR in the promoter region was 5, among which ODC1 had been reported in the esophageal cancer, PHB2, PCMT1, ARHGEF4 also has a number of studies in the treatment of cancer, and only the ADuC11B1L is less research, and this part focuses on the role of B11B1L in the development of ESCC. The level of DNA methylation in ESCC and cell lines decreased (P 0.001) and negative correlation with the expression of mRNA, and the methylation level was lower in the ESCC of the lymph node metastasis than that of the non-lymph node metastasis (P 0.001). In addition, in the ESCC cell line, the knock-down antigen 11B1L affects the degree of malignancy and can inhibit the proliferation and the invasion ability of the cell. In order to explore the correlation between the methylation frequency and the clinical pathological parameters of B11B1L,20 cases of lymph node metastasis and 20 paraffin-embedded ESCC tissues with no lymph node metastasis were used to detect the methylation level of B11B1L. The results showed that the methylation level of B11B1L in the lymph node metastasis was low (P 0.001). It is suggested that the patients with low methylation level of the CYP11B1L can be more easily transferred. The methylation level of p11B1L in cancer tissues was associated with the degree of tumor differentiation and lymph node metastasis (P = 0.039, P = 0.004). The results of the Kaplan-Meier survival analysis of ESCC were poor (P = 0.003), and the analysis of multivariate Cox regression survival model showed that the methylation of B11B1L was an independent prognostic factor for ESCC patients (P = 0.01). Therefore, the abnormal low methylation of P11B1L plays an important role in the development of ESCC and is an independent prognostic factor.
【学位授予单位】:北京协和医学院
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:R735.1
【相似文献】
相关期刊论文 前10条
1 孙振荣;;体外N-甲基-N′-硝基-N-亚硝基胍对DNA甲基化酶的抑制作用[J];国外医学(分子生物学分册);1980年06期
2 何忠效,危巍,白坚石,吴志奎;抗衰老药物对大鼠肝DNA甲基化酶活力的影响[J];中国中西医结合杂志;1994年06期
3 白坚石,何忠效;哺乳动物DNA甲基化酶[J];生理科学进展;1997年01期
4 周颖杰;王明贵;;质粒介导氨基糖苷类抗生素新耐药机制:16S rRNA甲基化酶[J];中国感染与化疗杂志;2010年02期
5 吴琳;张治国;张健;刘新平;李福洋;;靶向性甲基化酶真核表达载体pcDNA3.1-myc-3a的构建[J];现代生物医学进展;2010年03期
6 白坚石,,何忠效,顾郁;鼠肝DNA甲基化酶的纯化及物理化学性质的研究[J];生物化学杂志;1996年06期
7 薛继艳,何忠效;BamHI DNA甲基化酶的提纯及物理化学性质[J];生物化学杂志;1990年06期
8 李龙飞;郑世营;;甲基化与肺癌关系的研究[J];医学综述;2008年11期
9 林宁;孙海平;糜祖煌;;多重耐药大肠埃希菌16SrRNA甲基化酶、氨基糖苷类修饰酶基因研究[J];中国抗生素杂志;2008年09期
10 吴琼;倪语星;;一种新的氨基糖苷类耐药决定因子:质粒介导的16S rRNA甲基化酶[J];微生物与感染;2009年01期
相关会议论文 前10条
1 姚军;李威;秦智伟;王晓武;武剑;;植物DNA甲基化及检测方法[A];中国园艺学会十字花科蔬菜分会第六届学术研讨会暨新品种展示会论文集[C];2008年
2 汪宏良;邹义春;柯俊;鲍群丽;罗卓跃;;多药耐药铜绿假单胞菌16S rRNA甲基化酶、氨基糖苷类修饰酶基因研究[A];湖北省暨武汉市微生物学会分析微生物专业委员会第十届第五次学术会议论文汇编[C];2008年
3 连佳;黄圆圆;崔秀宏;高飞;安晓荣;侯健;;组蛋白去甲基化酶在小鼠卵巢组织中的表达[A];全国动物生理生化第十一次学术交流会论文摘要汇编[C];2010年
4 郑一超;徐瑞敏;吕文蕾;黄荟杰;李金凤;刘宏民;;组蛋白赖氨酸特异性去甲基化酶1的生物学意义及原核表达[A];2011年中国药学大会暨第11届中国药师周论文集[C];2011年
5 韩志富;刘培源;程伟;谷立川;李宏;陈涉;柴继杰;;组蛋白去甲基化酶JHDM1的晶体结构研究[A];中国晶体学会第四届全国会员代表大会暨学术会议学术论文摘要集[C];2008年
6 孔祥谦;欧阳斯盛;梁中洁;叶飞;陈丽敏;罗成;蒋华良;;赖氨酸特异性去甲基化酶1催化反应机制的理论研究[A];第十一届全国计算(机)化学学术会议论文摘要集[C];2011年
7 陈琳;陈杖榴;刘健华;;16S rRNA甲基化酶介导的对氨基糖苷类高水平耐药性的初步研究[A];中国畜牧兽医学会兽医药理毒理学分会第九次学术讨论会论文与摘要集[C];2006年
8 陈飞;方瑞;杨慧蓉;董争红;房健;朱婷婷;巩微;石雨江;徐彦辉;;LSD2/KDM1b的结构研究和功能研究——LSD2/KDM1b识别底物与酶活调节的新机制[A];中国晶体学会第五届全国会员代表大会暨学术大会(大分子分会场)论文摘要集[C];2012年
9 邓大君;;CpG甲基化与癌变原理研究[A];第三届中国肿瘤学术大会教育论文集[C];2004年
10 杨财广;;核酸去甲基化酶FTO的小分子抑制剂[A];中国化学会第29届学术年会摘要集——第22分会:化学生物学[C];2014年
相关重要报纸文章 前1条
1 张国芳;蓝斐:创新是信心和习惯[N];科技日报;2013年
相关博士学位论文 前10条
1 吴添文;五指山近交系小型猪骨髓和脐带间充质干细胞的全基因组甲基化和转录组联合分析[D];中国农业科学院;2014年
2 赵黎;组蛋白去甲基化酶JMJD3在SAHF形成中的作用及机制研究[D];东北师范大学;2015年
3 曾铁波;小鼠Dlk1-Dio3印记区域内一个新的差异甲基化区的表观遗传学分析[D];哈尔滨工业大学;2015年
4 梅新宇;CHFR,CDKN2A甲基化在食管鳞癌中的表达及其在放射抵抗中的作用研究[D];山东大学;2015年
5 贾园荟;组蛋白去甲基化酶PHF8参与神经分化的研究与UHRF1、UHRF2调控起始性DNA甲基化的功能研究[D];华东师范大学;2013年
6 陈莹;基于近红外荧光的甲基化及其基因表达检测新技术的研究[D];东南大学;2015年
7 齐善康;组蛋白去甲基化酶LSD2的结构功能研究与UHRF1在基因组印迹中的作用研究[D];华东师范大学;2013年
8 任立坤;小鼠早期胚胎线粒体DNA重头甲基化的研究[D];中国农业大学;2016年
9 徐记迪;柑橘全基因组DNA甲基化分析及调控作用研究[D];华中农业大学;2015年
10 赵德志;去甲基化酶KDM5A调控天然免疫应答及其作用机制研究[D];浙江大学;2014年
相关硕士学位论文 前10条
1 苏畅;基于白桦全基因组重亚硫酸盐测序(bisulfite-sequencing)的甲基化图谱分析[D];东北林业大学;2015年
2 张峄桥;高原适应表观遗传学甲基化研究技术MS-RDA的优化与应用[D];中国人民解放军军事医学科学院;2015年
3 张宝东;重离子辐射小鼠旁器官LINE1和B1甲基化遗传分析[D];大连海事大学;2015年
4 彭涛;胃癌组织的DNA甲基化和基因表达研究[D];河北北方学院;2015年
5 刘荣华;蛋白质精氨酸甲基转移酶PRMT5甲基化生物学功能研究[D];南京大学;2013年
6 李彦伟;组蛋白去甲基化酶JMJD3表达与胶质瘤相关性的研究[D];第四军医大学;2014年
7 邓向东;四川省畜禽动物源大肠杆菌质粒介导16S rRNA甲基化酶耐药基因检测[D];四川农业大学;2014年
8 严西萍;孵化温度对鸭胚基因组甲基化的时空影响及相关基因的转录调控研究[D];四川农业大学;2015年
9 祝海军;RRBS数据分析新流程的建立及其在肿瘤细胞中等位基因特异甲基化分析的应用[D];华东师范大学;2016年
10 沈笑;高通量分析人食管鳞癌甲基化差异基因的相关研究[D];北京协和医学院;2016年
本文编号:2436916
本文链接:https://www.wllwen.com/yixuelunwen/zlx/2436916.html