鞋印图像多标签聚类算法研究
[Abstract]:Shoeprint image is one of the important evidence of crime scene. The automatic classification management of a large number of shoeprint images can improve the efficiency of case detection. The existing clustering algorithms for shoe printing image are focused on the single label clustering problem, but the difference between categories is small, and wear and tear and incomplete factors make the difference between categories more blurred. That is, there is no obvious separation between the different categories; At the same time, a shoe print image often contains one or more different types of pattern patterns, so there are different shoe printing images containing the same type of pattern, so, A shoe print image can be divided into different categories according to the type of pattern it contains. On the basis of analyzing the characteristics of shoe printing image, this paper proposes a multi-label clustering algorithm for shoe print image. The main work is as follows: 1) A new multi-label clustering algorithm based on improved fuzzy C-means clustering algorithm is proposed. This algorithm improves the membership matrix of fuzzy C-means clustering algorithm. Considering the relationship between image and clustering center and the relationship between image and image, a multi-label clustering algorithm for shoe printing image is proposed. The algorithm starts with high density points and uses the improved membership matrix to determine the relationship between image and category to realize the multi-label clustering of shoeprint image. In this algorithm, the F-measure value on the actual shoe print data set reaches 79.09.2) A new multi-label clustering algorithm based on random walk is proposed. The idea of random walk is applied to the shoe print image for the first time. In the optimization of likelihood matrix, First, each image is clustered, then the category is merged. Finally, the multi-label image is re-labeled to realize the multi-label clustering of shoeprint image. This algorithm considers the relationship between images as well as the relationship between categories. This algorithm has a F-measure value of 78.34.3 on the actual shoe print data set.) A multi-label clustering algorithm for shoe print image based on probabilistic latent semantic analysis is proposed. This algorithm applies probabilistic latent semantic analysis model to shoe print image. The pixel semantic vocabulary is learned, The probability distribution matrix between the image and the potential topic is obtained, and the relationship between the images is established. Through the two processes of single label clustering and multi-label clustering, the multi-label clustering of shoeprint image database is realized. The F-measure value of this algorithm on the actual shoe print data set is 73.61.
【学位授予单位】:大连海事大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:D918.91;TP391.41
【相似文献】
相关期刊论文 前9条
1 翁南洲;水迹鞋印形成特点及拍摄技术[J];警察技术;2004年01期
2 宁军丽,王海荣;动力形态特征在鞋印检验中的应用[J];警察技术;2004年02期
3 陈朝晖;;“血鞋印”的困惑[J];警察技术;2008年04期
4 邵永军;陈骐;;浅谈规避鞋印作案现场的勘查工作要点[J];警察技术;2011年03期
5 杨玉柱,杨洪臣,王志群,代雪晶;白瓷砖上水迹鞋印的拍摄[J];警察技术;1999年03期
6 杨智勇;许磊;;利用鞋底镶嵌物特征破获杀人案1例[J];警察技术;2007年05期
7 高树辉,王新淮;现场鞋印档案管理及计算机辅助检索系统研究[J];公安大学学报(自然科学版);2003年02期
8 王新淮,高树辉,班茂森,郭威;鞋印档案管理及计算机辅助检索系统研究[J];警察技术;2001年05期
9 宁宏宇;只要留下足迹,便能把你找到——英国最新研制出一种鉴别足迹的系统[J];科技成果纵横;2000年04期
相关会议论文 前2条
1 王治民;房伊平;;车祸后自缢分析1例[A];全国第七次法医学术交流会论文摘要集[C];2004年
2 肖睿;陆乃将;施鹏飞;;鞋印匹配算法[A];第十三届全国图象图形学学术会议论文集[C];2006年
相关重要报纸文章 前5条
1 通讯员 刘敬元 刘永胜 记者 周丛松;鞍钢:从严管理动真格[N];工人日报;2001年
2 周泽春邋张绿化 许诗谊;带血鞋印修补证据“漏洞”[N];检察日报;2007年
3 记者 章苒 王菁婧;天台:一家族5童失踪,谜团初解[N];新华每日电讯;2010年
4 周水清;收集证据新思路[N];人民公安报;2000年
5 记者 刘娜 通讯员 谢娟 吴远国;品味“痕迹”的魅力[N];湖北日报;2005年
相关硕士学位论文 前8条
1 李盐;基于SIFT的鞋印图像特征提取及配准研究[D];河南理工大学;2015年
2 党甜甜;基于密度的鞋印图像聚类算法研究[D];大连海事大学;2016年
3 荆怡;基于语义的鞋印图像分类算法研究[D];大连海事大学;2017年
4 朱悦;鞋印图像多标签聚类算法研究[D];大连海事大学;2017年
5 王加丽;交互式现场鞋印花纹提取算法研究[D];大连海事大学;2017年
6 舒莹莹;基于聚类的鞋印图像检索算法研究[D];大连海事大学;2016年
7 闫旭琴;自动鞋印分析与比对系统中的关键技术的研究与实现[D];山东科技大学;2007年
8 董菲菲;基于三维鞋印的鞋底花纹分类及模块设计[D];南昌大学;2010年
,本文编号:2398453
本文链接:https://www.wllwen.com/falvlunwen/fanzuizhian/2398453.html