Copula-VaR在中国创业板IPO定价中的应用研究
发布时间:2017-05-13 16:13
本文关键词:Copula-VaR在中国创业板IPO定价中的应用研究,由笔耕文化传播整理发布。
【摘要】:中国创业板市场从建立至今尚不足五年,虽然建立的时间较短,创业板上市公司数量和市值无论是其绝对值还是占主板的相对比重都呈现增长趋势。但是由于各市场主体缺乏相关经验,且各项制度尚不健全,特别是创业板的股票市场首次公开发行(IPO,Initial Public Offerings)定价过程的科学性和规范性与西方国家成熟的市场相比逊色许多。在创业板市场上市的公司主要是新兴产业的中小型企业,通常由于具备某种核心技术或独特的经营模式而成为某一领域的佼佼者。目前金融市场广泛应用的IPO定价模型如股利折现模型、现金流量折现模型和资本资产定价模型等往往适用于发展较为稳定的成熟型公司,如果运用在中国创业板上市公司则难免出现水土不服现象。中国股市长期以来都存在高抑价、高市盈率现象,特别是近几年创业板的超高市盈率在刺激了市场的投资意愿同时也让投资者的疑虑渐渐加重,随之而来的新股频频破发给市场蒙上了一层阴影。中国创业板新股发行定价大多沿用主板市场的市盈率倍数法,然而近年来创业板市场高市盈率和破发潮并存的现象,表明系统深入地研究并借鉴现有的IPO定价理论思想,重视创业板市场与主板的差异,构建更加适用于创业板的IPO定价方式已成为当今理论界和实践界亟待解决的问题。 本文从IPO定价模型角度出发,首先对现行IPO定价理论模型的适用范围和局限进行分析,结合多因素法和可比公司法构建创业板IPO定价模型,这两种方法在功能上有所区分:多因素法主要基于内在价值理论,建立股票价格与其各影响因素变量的多元回归模型。可比公司法主要用于对新上市公司的市场风险进行预测,由于新上市公司缺乏交易数据,很难通过其自身收益率对其市场风险进行预测,基于Copula函数的可比公司VaR预测方法为新上市公司的市场风险预估提供一条有效途径。然后将所计算的市场风险值VaR引入多因素定价模型以计算IPO发行价格。所构建的模型一方面继承了多因素法的广泛适用性,另一方面有效利用可比公司数据对新上市公司的风险进行预测评估,并将市场风险作为新的价值变量导入多因素模型,进一步修正和完善了传统的多因素定价法。 最后为了验证模型的适用性,,选择三家具有一定代表性的创业板上市公司作为应用研究对象,根据现有可比公司选择标准分别为三家上市公司选取可比公司,并采用Copula函数分析应用对象与对应的可比公司以及可比公司之间的相依关系,基于可比公司的对数收益率选择合适的Copula函数描述其相依结构,并结合GARCH模型和蒙特卡罗模拟方法对应用对象的市场风险VaR进行预估,此方法经验证可以有效地预测新上市公司的市场风险VaR,并且其预测结果与其他常用VaR预估模型相比更为准确。再利用所构建的基于Copula-VaR的IPO定价模型对应用对象的发行价格进行预估,结果表明所预估的发行价由于考虑了各内在价值因素的影响,尤其是市场风险因素的影响,更好地反应了股票的内在价值和市场需求,一定程度上提高了定价的合理性和可靠性。
【关键词】:创业板IPO定价 VaR Copula函数 可比公司法 多因素模型
【学位授予单位】:江南大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:F832.51;F224
【目录】:
- 摘要3-4
- Abstract4-8
- 第一章 绪论8-16
- 1.1 研究背景和意义8-9
- 1.2 相关文献综述9-12
- 1.2.1 IPO 定价相关理论综述9-10
- 1.2.2 VaR 理论综述10-12
- 1.3 研究内容和研究方法12-16
- 1.3.1 研究内容12-13
- 1.3.2 研究方法13
- 1.3.3 论文创新点13-16
- 第二章 IPO 发行制度背景与理论现状16-30
- 2.1 IPO 发行机制和监管机制概况16-18
- 2.1.1 IPO 发行机制16-17
- 2.1.2 IPO 监管审核制度17-18
- 2.2 现行 IPO 定价理论及分析18-24
- 2.2.1 现行 IPO 定价理论介绍18-22
- 2.2.2 现行 IPO 定价理论适用性和局限性分析22-24
- 2.3 中国创业板定价现状24-30
- 2.3.1 中国创业板市场基本情况24-25
- 2.3.2 创业板 IPO 定价流程25-26
- 2.3.3 创业板 IPO 定价方法26-27
- 2.3.4 创业板 IPO 定价效率27-30
- 第三章 Copula 在创业板 VaR 度量中的应用30-44
- 3.1 创业板市场风险30
- 3.2 计算 VaR 的 GARCH 族模型介绍30-32
- 3.2.1 RiskMetrics 模型30-31
- 3.2.2 GARCH 模型31-32
- 3.2.3 GJR 模型32
- 3.2.4 EGARCH 模型32
- 3.3 基于 Copula-GARCH 模型计算 VaR32-35
- 3.3.1 Copula-GARCH 模型32-33
- 3.3.2 常用的 Copula 函数33-35
- 3.4 Copula-VaR 计算案例35-44
- 3.4.1 构建 Copula-VaR 模型35-36
- 3.4.2 应用计算36-40
- 3.4.3 结果分析40-44
- 第四章 基于 Copula-VaR 的 IPO 定价模型及其应用44-56
- 4.1 IPO 定价模型构建44-49
- 4.1.1 影响因素分析44
- 4.1.2 指标选取44-47
- 4.1.3 模型的构建47-49
- 4.2 应用算例49-53
- 4.2.1 主成分分析49-51
- 4.2.2 IPO 定价计算51-53
- 4.3 结果分析53-56
- 第五章 研究结论与建议56-58
- 5.1 研究结论56-57
- 5.2 政策建议57-58
- 致谢58-60
- 参考文献60-64
- 附录一:作者在攻读硕士学位期间发表的论文64-65
- 附录二:研究样本相关数据65-74
【参考文献】
中国期刊全文数据库 前10条
1 韦艳华,张世英;金融市场的相关性分析——Copula-GARCH模型及其应用[J];系统工程;2004年04期
2 史道济,王爱莉;相关风险函数VaR的界[J];系统工程;2004年09期
3 周敏;王春峰;房振明;;基于VaR的现金流风险度量模型研究[J];管理科学;2008年06期
4 韦艳华;张世英;;多元Copula-GARCH模型及其在金融风险分析上的应用[J];数理统计与管理;2007年03期
5 易文德;廖少毅;;基于Copula函数的组合资产条件相依性模型研究[J];数学的实践与认识;2010年23期
6 史道济;李t
本文编号:363008
本文链接:https://www.wllwen.com/falvlunwen/gongsifalunwen/363008.html