100%低地板轻轨车关键技术研究与装备集成
发布时间:2018-03-25 14:49
本文选题:低地板车 切入点:轻量化车体 出处:《北京交通大学》2013年博士论文
【摘要】:本文基于我国研制的首列具有完全自主知识产权的100%低地板轻轨车,对铝合金轻量化车体、独立轮黏着利用、基于网络的故障诊断、基于新型微机系统的牵引控制等关键点进行了深入的理论分析,开展了以下研究工作: 根据低地板车的特点,采用模块设计理念和铝合金整体承载结构,实现了整车的模块化设计和轻量化,整车减重2吨多。借助ANSYS软件对铝合金车体进行了建模和有限元强度分析,分析结果表明,开发研制出的板梁结构铝合金车体,完全满足车辆的轻量化和整体强度要求。 针对低地板车两侧独立轮对由于缺乏传统的机械耦合作用而更容易发生擦轮的现象,深入分析了传统防滑/防空转策略的不足,提出了一种基于全维状态观测器的黏着利用优化控制方法,进行了多工况下的实例仿真和现场动调试验,验证了所提出的黏着利用优化控制方法可快速搜索到当前路况的黏着峰值点,实现了100%低地板车电力牵引系统的最佳黏着利用。 基于100%低地板车网络需求,从开放式系统互联(Open Systems Interconnection, OSI)多重模型出发分析了CANOpen,总线作为100%低地板车车载网络的可行性,给出了基于调度的数据传输率优化原则;从CANOpen的网络动态实时传输出发,研究了基于事件系统(Event Systems, ES)推理和数据特征层及决策层融合的100%低地板车的设备级与整车级故障诊断方法;结合网络传输和故障诊断,依托多代理系统(Multi-agent system, MAS)设计架构研究了100%低地板车的设备级与整车级动态维护维修方法,基于着色Petri网(Colored Petri Nets, CPN)模型给出了维护维修对象元件的动态确定方法并给出了维护维修过程的置信度。 面向100%低地板车电力牵引系统的控制需求,提出了双DSP+FPGA的系统架构模式,充分发挥了DSP和FPGA在数字信号处理及并行处理方面的性能优势,并基于分层控制技术设计软件功能,为实现高质量的牵引控制提供了完善的解决思路。以此为硬件基础,实现了异步SVM、同步SVM、优化同步SHEPWM及方波相结合的多模式脉宽调制策略,通过矢量控制和标量控制相结合的模式,实现了100%低地板车全速度范围内的牵引电机高性能控制。 通过整车关键技术的深入研究和关键装备的集成,实现了完全自主创新。开发研制出牵引变流系统及网络监控与故障诊断软件,基于地面节能型牵引传动试验系统及现场大量试验。目前,论文所研制的100%低地板车已经完成了所有型式试验和线路运行考核试验,完成了5000多公里的中试里程,已经正式上线试运行,通过试验波形及数据的分析、计算,对论文所述的关键技术逐一进行了验证,说明了论文所研究的关键控制技术及装备的可行性、可靠性和适用性。
[Abstract]:100% low floor light rail vehicles developed in China based on the first with completely independent intellectual property rights, the Aluminum Alloy lightweight body, independent wheel adhesion, fault diagnosis based on network, the key point of new computer system traction control is studied based on theoretical analysis, carried out the following research work:
According to the characteristics of low floor vehicles, using the modular design concept and Aluminum Alloy integral bearing structure, the modular design and lightweight vehicle, vehicle weight more than 2 tons. With the help of ANSYS software for the analysis of modeling and finite element strength of Aluminum Alloy body, the analysis results show that the developed plate beam structure Aluminum Alloy body, fully meet the requirements of vehicle weight and overall strength.
For low floor vehicles on both sides of the independent wheel due to the lack of mechanical coupling effect of traditional and more prone to wheel friction phenomenon, in-depth analysis of the shortcomings of the traditional anti / anti slip strategy, put forward a full state observer adhesion optimization control method based on the simulation and field dynamic test under various conditions. To validate the optimization control method can fast search to the current road adhesion peak with the adhesive, to achieve the best adhesion of 100% low floor vehicle electric traction system use.
100% low floor vehicle network based on demand from the open system interconnection (Open Systems Interconnection, OSI) multi model analyzed CANOpen bus as the feasibility of 100% low floor vehicle network, data transmission rate scheduling optimization principle is given based on the CANOpen network; starting from the dynamic real-time transmission, based on event system (Event Systems ES), reasoning and data feature layer and decision layer fusion of 100% low floor vehicle equipment level and vehicle level fault diagnosis method; combined with the network transmission and fault diagnosis based on multi agent system (Multi-agent, system, MAS) on the architecture design of 100% low floor vehicle equipment level and vehicle level dynamic maintenance method, colored Petri based on the network (Colored Petri Nets, CPN) model is proposed to maintain the dynamic maintenance of object components and gives a method to determine the maintenance of confidence repair process.
According to the control requirement of 100% low floor vehicle electric traction system, put forward the system architecture model of dual DSP+FPGA, make full use of DSP and FPGA in the digital signal processing and parallel processing advantages, and based on the hierarchical control software technology, providing a solution for improving the traction control to achieve high quality. Based on hardware the foundation, realize the asynchronous SVM, synchronous SVM, multi mode pulse width modulation strategy optimization of synchronous SHEPWM and square wave combination, through the combination of vector control and scalar control mode, the traction motor control performance of 100% low floor vehicle full speed range.
Through the integration of research and key technology and equipment of the vehicle, to achieve a completely independent innovation. Develop the traction converter system and network monitoring and fault diagnosis software, ground energy-saving drive experiment system and field experiments based on the research. At present, 100% low floor vehicles have completed all type test and line operation test, completed a test mileage of more than 5000 kilometers, has officially launched a trial run, through the analysis, the test waveforms and data calculation, the key technology of the one by one to verify, to illustrate the feasibility of the key control technology and equipment research, reliability and applicability.
【学位授予单位】:北京交通大学
【学位级别】:博士
【学位授予年份】:2013
【分类号】:U239.3
【参考文献】
相关期刊论文 前3条
1 冯爱军;魏运;;轻轨交通系统在我国的应用前景[J];都市快轨交通;2011年06期
2 沈滢,郝荣泰;异步牵引电机磁场定向控制解耦算法的研究[J];铁道学报;2003年01期
3 王欢;戴焕云;;低地板轻轨车辆的技术分析与自主研发选型[J];中国铁路;2009年10期
,本文编号:1663615
本文链接:https://www.wllwen.com/falvlunwen/zhishichanquanfa/1663615.html