全液压滚切剪电液伺服协同控制策略研究
发布时间:2018-05-13 01:11
本文选题:滚切剪 + 电液伺服 ; 参考:《太原科技大学》2014年硕士论文
【摘要】:目前,在中厚板生产线上,由原料库、加热炉、轧机、矫直机、冷床、切边剪、定尺剪和垛台等核心主体设备组成了中厚板生产流程。山西省冶金设备设计理论与技术重点实验室---省部共建国家重点实验室培育基地,多年来在轧机、矫直机和滚切剪等冶金重型机械领域进行了大量的理论和工程实践化研究工作,设计完成了具有自主知识产权和专利的全液压滚切剪,其在中厚板的塌角和刀瘤的消除上起到关键的作用,保证了切口的平整度。以全液压滚切剪为研究对象,采用液压伺服实现设备的两个液压伺服缸的相对位置和速度控制,保证全液压滚切剪的上剪刃在时间和空间上完成近似纯滚动剪切动作。 面向全液压滚切剪的两路电液伺服系统,提出了基于系统耦合误差补偿原理的控制策略。在重点分析两路电液伺服系统在不同工况下运行时,因为不同的板厚相应有不同的剪切力,严重影响了全液压滚切剪的上剪刃的近似纯滚切运动,选择交叉耦合控制理论实现两路电液伺服位移系统的协同运动控制,,使得上剪刃完成工艺要求动作。首先,在不改变原有单回路的基础上,根据交叉耦合控制原理设计了耦合误差补偿控制环节。其次,给出了系统耦合误差的计算模型,并在设计耦合误差控制器的基础上,达到两路之间的系统耦合误差动态分配,实现系统协同运动控制。最后,完成了滚切剪电液伺服系统的仿真和现场实验,实验部分是在原有的设备的Simatic PLC控制系统的基础上增加耦合误差补偿模块,结果表明该方案保证了上剪刃的近似滚切运动。 液压滚切剪为研究对象,以工程项目为背景,在电气控制系统中运用基于模糊PID的交叉耦合控制理论,设计的两路电液伺服协同控制方案,在工业项目中实际应用效果良好,对多路电液伺服系统的研究有借鉴意义。
[Abstract]:At present, the production process of medium and thick plate is composed of raw material storehouse, reheating furnace, rolling mill, straightening machine, cold bed, edge cutting shear, ruler shear and stacking table and so on. Shanxi Provincial key Laboratory of Metallurgical equipment Design Theory and Technology-State key Laboratory training Base has been established by the Ministry of Shanxi Province for many years in the rolling mill, In the field of heavy metallurgical machinery, such as straightener and rolling shear, a great deal of theoretical and engineering research work has been carried out, and the full hydraulic rolling shear with independent intellectual property rights and patent has been designed and completed. It plays a key role in the sloughing angle of the plate and the elimination of the knife nodule and ensures the planeness of the incision. The relative position and speed of two hydraulic servo cylinders of the equipment are controlled by hydraulic servo to ensure that the upper cutting edge of the full hydraulic rolling shear can complete the approximately pure rolling shear action in time and space with the full hydraulic rolling shear as the object of study and the hydraulic servo system is used to control the relative position and speed of the two hydraulic servo cylinders. A control strategy based on the principle of system coupling error compensation is proposed for a two-channel electro-hydraulic servo system for full hydraulic rolling shear. When the two-channel electro-hydraulic servo system is running under different working conditions, because the different plate thickness has different shear force, it seriously affects the approximate pure rolling movement of the upper cutting edge of the full hydraulic rolling shear. The cross coupling control theory is chosen to realize the cooperative motion control of two electro-hydraulic servo displacement systems, which makes the upper shear edge complete the process requirements. Firstly, on the basis of not changing the original single loop, the coupling error compensation control link is designed according to the principle of cross coupling control. Secondly, the calculation model of system coupling error is given. Based on the design of coupling error controller, the dynamic distribution of system coupling error between two paths is achieved, and the cooperative motion control of the system is realized. Finally, the simulation and field experiment of the rolling shear electro-hydraulic servo system are completed. The experimental part is to add the coupling error compensation module to the Simatic PLC control system of the original equipment. The results show that the scheme ensures the approximate rolling motion of the upper cutting edge. The hydraulic rolling shear is used as the research object, taking the engineering project as the background, the cross-coupling control theory based on fuzzy PID is applied in the electric control system, and the design of the two-channel electro-hydraulic servo cooperative control scheme is designed. The practical application effect in the industrial project is good. It can be used for reference in the study of multi-channel electro-hydraulic servo system.
【学位授予单位】:太原科技大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TG333.21;TP273
【参考文献】
相关期刊论文 前10条
1 矫志杰,何纯玉,陈波,王国栋;首钢中厚板轧机过程控制系统[J];东北大学学报;2004年05期
2 王中华,王兴松,徐卫良;X-Y定位平台的鲁棒自适应摩擦补偿[J];东南大学学报(自然科学版);2002年01期
3 刘金琪,马洪飞,鹿洪芳;基于干扰观测器的调速系统的防振控制[J];电气传动自动化;1999年01期
4 孙一康;适用于轧钢过程的计算机控制系统[J];中国工程科学;2000年01期
5 毕磊;肖本贤;于海滨;郁伉;;基于一次指数平滑模型预测的轮廓误差补偿方法[J];合肥工业大学学报(自然科学版);2010年08期
6 丛爽;刘宜;;多轴协调运动中的交叉耦合控制[J];机械设计与制造;2006年10期
7 王述彦;师宇;冯忠绪;;基于模糊PID控制器的控制方法研究[J];机械科学与技术;2011年01期
8 张代林;刘宇晗;杨吉祥;陈幼平;;基于多层模糊控制的交叉耦合补偿方法的研究及应用[J];机械设计;2012年01期
9 黄庆学;马立峰;李进宝;王建梅;张其生;赵春江;;新型滚切剪非对称曲柄机构原理[J];机械工程学报;2008年05期
10 朱亚斌,沈康;宝钢冷轧3级控制系统L3_L2_L1间通讯实现[J];南京理工大学学报(自然科学版);2005年S1期
本文编号:1880973
本文链接:https://www.wllwen.com/falvlunwen/zhishichanquanfa/1880973.html