时频变高速卷绕转子系统特性及性能调控研究
发布时间:2018-05-27 18:06
本文选题:卷绕系统 + 柔性支承 ; 参考:《东华大学》2015年博士论文
【摘要】:在涤纶长丝卷绕机上,锭轴、卷装、接触辊所形成的转速、卷装质量时变,柔性支承参数频变且结构耦合的高速柔性转子时频变系统的动力学问题是卷绕机产品动态设计理论与技术的关键,也是制约国产卷绕机研发的主要瓶颈。本文从其应用基础理论出发展开研究,以期揭示卷绕机动力学特性和核心技术问题。根据目前生产工艺,涤纶长丝卷绕线速度可高达6000 m/min。在卷绕过程,随着长丝卷绕量的增加,卷装直径逐渐增大至满卷尺寸,而锭轴则从最高工作转速降到最低卷绕转速以保持卷绕线速度恒定。当初始卷绕直径为105mm时锭轴最高转速达18189r/min,而直径为65mm的对应接触辊转速更高达29382 r/min。卷绕机完成单一周期的卷绕任务需要经历5个不同阶段过程,除其中最后的落卷阶段外,其余4个阶段中转子系统均表现出不同的动力学特性:在空管快速启动阶段和满卷降速停止阶段,锭轴转速时变,橡胶圈柔性支承参数频变,而其质量与转动惯量不变;在卷绕过程阶段,随着卷装直径的增大,不仅转速、质量、转动惯量时变和柔性支承参数频变,而且还存在“锭轴-卷装-接触辊”间的刚柔耦合;只有在空管最高转速点保持阶段,锭轴才属于目前国内大多数学者所研究的参数恒定的柔性支承转子系统。显然该卷绕转子系统可谓是具有时频变特性的复杂转子系统。本文围绕高速卷绕转子系统的时频变特性以及参数调控展开研究:(1)分析典型卷绕机的结构组成,剖析卷绕机理、工艺过程,阐明单一卷绕周期内系统不同阶段的运动特性及工艺要求。(2)采用Timoshenko梁单元,建立各组件转子有限元模型和动力学方程;进而引入支承耦合和各组件转子配合关系,建立锭轴系统有限元模型和动力学方程;最后通过“锭轴-卷装-接触辊”的耦合关系,建立了整个卷绕转子系统全运动过程的有限元模型和动力学方程。(3)采用受迫非共振法的原理试验测取了“O”型橡胶圈支承刚度和阻尼,并拟合出橡胶圈支承参数频变特性曲线以及参数拟合计算式,为仿真分析系统的动力学特性打下基础。(4)分析各组件转子通过耦合形成转子系统后的质量矩阵、刚度矩阵等的构成原理和过程。针对卷绕系统具有时频变特性,提出求解系统动力学响应方法,并采用Matlab编制可适应具有时频变特性的Newmark直接积分法函数和锭轴、卷绕系统动力学响应计算程序。(5)建立“接触辊-卷装”的接触耦合有限元分析模型,求取接触耦合刚度与丝层变化的函数关系。对单一卷绕周期内依次、连续进行4个阶段动力学特性计算和分析,揭示了在不平衡质量激励下卷绕系统的动态响应幅频特性,并从中可知系统较大的不平衡响应幅值是发生在锭轴快速启动阶段,进而指出调控不平衡响应的重点应放在此阶段。(6)调节卷绕转子系统相关结构参数和工作参数,对比参数调整前后系统不平衡响应,表明合理调整相关参数来控制系统的不平衡响应幅值行之有效,并给出了相应的调控方法。(7)对一实例卷绕转子系统进行分析,指出该卷绕机不能达到既定的高卷绕速度而只能降低转速进行工作的原因,以及通过调整工作转速区以使该卷绕机能正常工作的可能性。这些分析得到了相应试验验证和产品在实际工作中的检验。全文研究创新点在于:①建立了考虑时频变参数影响和“锭轴-卷装-接触辊”耦合关系的全运动过程系统模型,可有效分析研究高速卷绕转子系统完整卷绕周期内的动力学性能;②测试了“O”型橡胶圈的柔性支承参数频变特性曲线;分析了“接触辊-卷装”的接触耦合刚度与丝层厚度的函数关系;编制了卷绕转子系统数值计算程序,分析了单一卷绕周期内的系统动力学性能,全面揭示了高速卷绕转子系统在不平衡质量激励下的动态响应幅频特性;③提出通过调节卷绕转子结构参数和工作参数,可有效改善系统的动态性能,为进一步优化设计卷绕转子系统动力学参数打下坚实基础。本文的研究成果对于提高卷绕转子系统动力学性能,指导研发具有自主知识产权的卷绕机产品具有重要的理论意义和工程应用价值。
[Abstract]:On the polyester filament winding machine, the rotation speed of the spindle, the volume and the contact roll, the time change of the coiling quality, the frequency change of the flexible supporting parameters and the coupling of the structure are the key to the dynamic design theory and technology of the winding machine, and also the main bottleneck for the development of the home-made winding machine. According to the current production process, the winding speed of the filament winding line can be as high as 6000 m/min. in the winding process. With the increase of the filament winding amount, the volume of the coiling is gradually increased to the full volume, while the spindle axis is reduced from the highest working speed to the lowest. The winding speed is constant and the winding speed is constant. When the initial winding diameter is 105mm, the maximum speed of the spindle axis is 18189r/min, while the corresponding contact roller speed up to the diameter of 65mm is up to 29382 r/min. winding machine to complete the single cycle winding task, which requires 5 different stages, in addition to the final winding stage and the other 4 stages. The rotor system has different dynamic characteristics: in the fast starting stage of the air tube and the stop stage of full roll down speed, the spindle speed changes, the parameters of the rubber ring flexible support frequency change, and the mass and the moment of inertia are constant. In the winding process, with the increase of the volume of the volume, not only the rotational speed, the mass, the moment of inertia time change and the flexible support. The parameter frequency changes, and there is a rigid flexible coupling between the ingot shaft and the contact roller. Only in the stage of the highest speed point of the air tube, the spindle is a flexible supporting rotor system with constant parameters in the current domestic scholars. It is obvious that the winding rotor system is a complex rotor system with time-frequency characteristics. This paper studies the time frequency characteristics and parameter regulation of high-speed winding rotor system. (1) analyze the structure of the typical winding machine, analyze the winding mechanism, process process, clarify the motion characteristics and process requirements of the system in the different stages of the single winding cycle. (2) the finite element model of each component rotor is established by using the Timoshenko beam element. The finite element model and dynamic equation of the spindle axis system are established by introducing the support coupling and the relationship between the components of each component. Finally, the finite element model and dynamic equation of the whole motion process of the whole winding rotor system are established through the coupling relationship between the ingot shaft and the contact roller. (3) the forced non resonance method is adopted. The principle test has measured the support stiffness and damping of "O" rubber ring, and fitting out the frequency variation characteristic curve of the rubber ring support parameters and the parameter fitting calculation formula, which lays the foundation for the simulation and analysis of the dynamic characteristics of the system. (4) analysis the constitution principle of the mass matrix, stiffness matrix and so on after the rotor system is formed by the coupling of the components of each component. And process. In view of the time-frequency characteristics of the winding system, the dynamic response method of the system is solved, and the Newmark direct integral method function and spindle axis and the dynamic response calculation program of the winding system are compiled with Matlab. (5) the contact coupling finite element analysis model of "contact roller coiling" is set up, and the contact coupling finite element analysis model is established. The relationship between the coupling stiffness and the change of the silk layer. In the single winding cycle, the dynamic response of the system is calculated and analyzed in 4 successive stages. The amplitude frequency characteristics of the dynamic response of the winding system under unbalance mass excitation are revealed, and the larger unbalance response amplitude of the system is seen in the rapid start stage of the spindle axis. It is pointed out that the key points for regulating the unbalanced response should be put in this stage. (6) adjusting the related structural parameters and working parameters of the winding rotor system, comparing the unbalanced response of the system before and after adjusting the parameters, indicating that the reasonable adjustment of the relevant parameters to control the amplitude of the unbalanced response of the system is effective, and the corresponding control methods are given. (7) an example volume. This paper analyzes the rotor system and points out that the winding machine can not achieve the established high winding speed but can only reduce the speed to work, and the possibility of normal working of the winding machine through adjusting the working speed zone. These analyses have obtained the corresponding test verification and the inspection of the product in the actual work. The points are as follows: (1) a full motion process system model considering the influence of time-frequency variable parameters and the coupling relationship between the ingot shaft and the contact roller is established. The dynamic performance of the complete winding cycle of the high-speed winding rotor system can be analyzed and studied effectively. Secondly, the frequency variation characteristic curve of the flexible support parameters of the "O" rubber ring is tested. The relationship between the contact coupling stiffness and the thickness of the wire layer, the numerical calculation program of the winding rotor system is developed, the dynamic performance of the system in a single winding cycle is analyzed, and the amplitude frequency characteristic of the dynamic response of the high-speed winding rotor system under the unbalance mass excitation is fully revealed. The rotor structure parameters and working parameters can effectively improve the dynamic performance of the system, and lay a solid foundation for the further optimization of the dynamic parameters of the winding rotor system. The research results of this paper have important theoretical significance for improving the dynamic performance of the winding rotor system and guiding the development of a winding machine with independent knowledge production. Engineering application value.
【学位授予单位】:东华大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:TS103
【相似文献】
相关期刊论文 前5条
1 孙翠莲;孔越;张林搚;肖田元;王冕;;基于主模型CAD/CAE集成的卷绕锭轴结构参数优化[J];系统仿真学报;2010年11期
2 谢晨芳;;高速卷绕机锭轴传动控制系统设计[J];天津工业大学学报;2009年05期
3 汤以范,唐勤生,黄凤根,杨祖蓉,沈文杰;锭轴传动型卷取机构的PCC控制技术[J];合成纤维;2003年02期
4 ;国外新技术新产品[J];纺织器材;1994年02期
5 ;[J];;年期
相关博士学位论文 前1条
1 闫江;时频变高速卷绕转子系统特性及性能调控研究[D];东华大学;2015年
相关硕士学位论文 前2条
1 杨艳艳;高速卷绕头锭轴转子动力学分析[D];中原工学院;2015年
2 易玮帆;锭轴转子系统模型的动态测试与仿真[D];东华大学;2014年
,本文编号:1943241
本文链接:https://www.wllwen.com/falvlunwen/zhishichanquanfa/1943241.html