基于高精度定位的地震勘探采集处理一体化研究

发布时间:2018-08-04 09:10
【摘要】:GPS技术在国民经济的各个方面使用越来越广,地质勘探领域较早引入了GPS技术,也是应用较广的领域,已经广泛应用于地质勘探的方方面面。目前较为常规的使用方法主要有2种:一种是利用普通手持式GPS进行精度要求较低(允许误差10m左右)环境下的定位,如野外地质考察、地质取样、大尺度的重力勘探、电法勘探、磁法勘探等。二是利用专用的差分GPS技术和设备,定位精度可以达到厘米级甚至毫米级,广泛用于要求定位精度较高的场合,如地震勘探中炮点和接收点测量、小尺度的地球物理勘探及工程勘探,大地位移测量及滑坡监测等场合。 上述两种方法在百道/千道级别的小规模地球物理勘探领域不存在时间和成本问题,但在万道/十万道级的3D地震勘探施工中需要反复进行数十万个接收点的定位测量,时间和价格成本严重制约了3D地震勘探的发展。依靠普通手持GPS定位装置,无法完成高精度定位,遍历接收点的人工成本极高;采用实时RTK技术的差分GPS设备和全站仪,每台价格动辄数万元。这些高额的设备成本和大量的人工成本导致了目前在大规模勘探中只能对进行部分控制点的高精度GPS定位,其他点则采用目测或测量绳进行估计,测量精度达不到现代高精度勘探的要求。而且由于是先测量后布设仪器的操作规程,存在设置的测量标志(小旗)被自然和人为因素毁坏的情况。地震勘探行业一直希望在每一个测量点(检波器)上均具有GPS功能,在野外可以实时测量每一个测量点(检波器)的位置,从而提高测量点(检波器)的位置精度,提高三维地震勘探的精度。但是针对采集站上集成的普通GPS芯片,其定位精度是很低的,范围在几米到几十米之间,这远远达不到地震勘探采集站定位的需求。 所以,若能将载波相位差分(RTK)技术应用到普通GPS接收机中,实现采集站上GPS芯片低成本高精度定位,解决3D地震勘探中的时间和成本问题,将具有现实深远意义。但是,在国际激烈竞争环境中,美国处于自身军事、国防和经济利益的考虑,这一技术对外是封锁的,国内只是代理他们的外包产品。针对上述问题,本文采用普通的价格低廉的GPS-OEMSTAR开发板,通过学习研究基于GPS星历解算原理和GPS静态相对定位中的载波相位差分原理(RTK),开发了具有自主知识产权的地震勘探专用GPS数据接收技术,GPS星历解算技术和地震勘探专用GPS差分相对定位技术,重点推导了具有自主知识产权的基于OEMSTAR开发板的地震勘探专用GPS差分定位公式,它需要将基准站和流动站的差分观测方程线性化,消除基准站和流动站与卫星及接收机有关的载波相位和钟差,并列出其相应的误差方程式和法方程式,依据最小二乘平差原理求出基线向量,通过基准站已知坐标,使普通GPS定位精度从十米级提高到厘米级,成功研制了GPS数据接收软件和GPS数据处理软件,完成了一套基于GPS—OEMSTAR开发板的地震勘探专用GPS差分定位系统,并通过实际数据的接收和处理,证明了该方案的实用性和可行性,同时依据地震勘探超多GPS有序排列等特点,实现GPS低成本高精度定位,满足地震勘探的需求。并在此基础上,提出了基于云计算的3D地震勘探专用GPS定位方法研究,该方法通过开展高速并行信息同步采集机制、实时GPS软件信号处理方法和高性能勘探定位模型三个方面的研究,解决大规模勘探专用GPS定位云中的云端的采集、存储和传输问题,研究云服务中的信息协作、处理和调度问题,建立针对大规模勘探应用的位置云模型,实现高性能的差分定位方法,完成面向大规模勘探专用GPS定位机制的研究,为未来3D地震勘探的发展提供了技术支持。在高精度定位的基础上,我们又提出了地震勘探定位、采集、处理一体化的设想,并对地震资料处理的第一步静校正做了研究,得到了一个P波和转换波都适用的基于波场延拓的静校正方法,通过模拟和实际数据的处理,证明了该方法的可行性和有效性。其中在实际数据处理的过程中,我们用基于OEMSTAR开发板的地震勘探专用GPS差分定位方法获得了检波器对应地表的高程数据,并将其应用到了静校正的延拓过程中,取得了不错的效果,这也证明了定位采集处理一体化的思路是正确的。 本文首先总结分析了当前地震勘探在GPS定位技术中存在的时间和成本问题,,指出未来3D地震勘探对定位技术的发展需要,从而引出用差分技术对普通GPS芯片实现低成本高精度定位的思想,对差分技术和国内外差分系统的建设进行概述,明确了地震勘探GPS差分定位系统的广阔前景;接着介绍分析了GPS卫星信号的组成和GPS卫星星历,总结了C/A码和P码的特点,对GPS导航电文的组成格式进行了说明,重点介绍了其中的星历参数以及每个参数所代表的具体意义,为后续星历解算技术奠定基础;然后对GPS定位存在的各方面误差进行分析,指出差分的必要性,并对差分的三种方法:位置差分、伪距差分和载波相位差分加以说明,并分析其各自优缺点,在此基础上,提出将来要建设的地震勘探GPS差分系统,突出数据链路的重要性;随后对地震勘探专用GPS差分协议RTCM电文进行说明,并对地震勘探伪距差分经常用到的电文类型18、19和地震勘探载波相位差分经常用到的电文20、21加以分析,并总结了这4种电文的相同和不同之处,依据奇偶校验法和位变换法,设计了地震勘探专用GPS差分协议编码和解码的流程;紧接着介绍OEMSTAR开发板的性能指标、技术参数、数据接口及RINEX数据格式,重点推导了基于OEMSTAR开发板的地震勘探专用GPS差分定位公式,它需要将基准站和流动站的差分观测方程线性化,消除基准站和流动站与卫星及接收机有关的载波相位和钟差,并列出其相应的误差方程式和法方程式,依据最小二乘平差原理即可求出,在此基础上,我们提出了基于云计算的3D地震勘探专用GPS定位方法研究,通过引入云计算的模型,对勘探云的云采集、云存储、云传输、云协作、云处理机制进行研究,建立面向勘探定位的云模型,实现勘探专用的GPS差分高精度定位处理方法,开展实际仿真和实验验证,研制大规模勘探专用GPS定位方法的原型系统,达到降低大规模GPS终端成本的效果;最后开发了GPS数据的接收技术,研究了GPS星历解算技术,设计了基于OEMSTAR开发板的地震勘探专用GPS差分定位算法流程,通过实际实验,从正面的相对误差及实际误差和侧面的东北天位置、东北天位置标准偏差、距离和模糊度漂移率等几个方面对算法做了详细的论证,得出了算法的精度在厘米级的结论,同时算法的稳定性也很高,完全满足了地震勘探的需求。为大规模勘探专用GPS定位方法的应用提供技术储备。在高精度定位的基础上,我们又提出了地震勘探定位、采集、处理一体化的设想,并对地震资料处理的第一步静校正做了研究,得到了一个P波和转换波都适用的基于波场延拓的静校正方法,通过模拟和实际数据的处理,证明了该方法的可行性和有效性。其中在实际数据处理的过程中,我们用基于OEMSTAR开发板的地震勘探专用GPS差分定位方法获得了检波器对应地表的高程数据,并将其应用到了静校正的延拓过程中,取得了不错的效果,这也证明了定位采集处理一体化的思路是正确的。 本文通过对GPS低成本高精度定位的研究,共取得以下一些成果: (1)研发了具有自主知识产权的基于OEMSTAR开发板的地震勘探专用GPS数据接收技术、地震勘探GPS星历解算技术、地震勘探GPS差分定位技术。 (2)推导了基于OEMSTAR开发板的地震勘探专用GPS差分定位公式,设计了地震勘探专用GPS差分电文的编码和解码流程,并通过实际实验,实现了地震勘探GPS低成本高精度定位。 (3)开发了一套基于OEMSTAR开发板的地震勘探专用GPS数据接收软件和GPS数据处理软件。 (4)提出了基于云计算的3D地震勘探专用GPS定位技术和未来3D地震勘探定位、采集和处理设备一体化的思想,并对地震资料处理的第一步静校正做了研究,得到了一个P波和转换波都适用的基于波场延拓的静校正方法,并用地震勘探专用GPS差分定位方法获得了检波器对应地表的高程数据,两者结合,取得了不错的处理效果。
[Abstract]:GPS technology is becoming more and more widely used in all aspects of the national economy. GPS technology is introduced earlier in the field of geological exploration, and it is also widely applied to all aspects of geological exploration. At present, there are 2 main methods of common use: one is to use ordinary handheld GPS for low precision (allowable error 10). Around m) the location of the environment, such as field geological survey, geological sampling, large scale gravity exploration, electric prospecting, magnetic prospecting, etc. Two, using special differential GPS technology and equipment, the positioning accuracy can reach centimeter level or even millimeter level, and is widely used for places with high positioning precision, such as the measurement of cannon points and receiving points in seismic exploration. Small scale geophysical prospecting and engineering exploration, geodetic displacement measurement and landslide monitoring.
The above two methods have no time and cost problems in the field of small scale geophysical exploration in 100 Dao / kilo level. But in the 3D seismic exploration and construction of Wan Dao / one hundred thousand channel, the location and measurement of hundreds of thousands of receiving points need to be repeated. The time and price cost seriously restrict the development of 3D seismic exploration. It depends on the ordinary handheld GPS. The position device can not complete the high precision positioning and traverses the artificial cost of the receiving point. The price of the differential GPS equipment and the total station with real time RTK technology are often tens of thousands of yuan. These high cost of equipment and a large number of artificial costs lead to the high precision GPS positioning for some control points in the large-scale exploration. His point is estimated by visual or measuring rope, and the accuracy of the measurement is not up to the requirements of modern high precision exploration. And because it is the first measure to set up the operating rules of the instrument, the setting of the measurement sign (small flag) is destroyed by the natural and human factors. The seismic prospecting industry has always hoped to have every measuring point (geophone). With GPS function, the location of each measurement point (geophone) can be measured in real time in the field, thus improving the position accuracy of the measuring point (geophone) and improving the accuracy of 3D seismic exploration. However, the positioning accuracy is very low for the integrated GPS chip integrated on the acquisition station, ranging from a few meters to dozens of meters, which is far from the seismic exploration. Explore the needs of the location of the collection station.
Therefore, if the carrier phase difference (RTK) technology can be applied to the ordinary GPS receiver, the low cost and high precision positioning of the GPS chip on the acquisition station and the solution of the time and cost problems in the 3D seismic exploration will be of profound significance. However, in the fierce international competition environment, the United States is in its own military, national defense and economic interests. In view of the above problems, this paper uses the common low price GPS-OEMSTAR development board, and develops an earthquake exploration with independent intellectual property rights through learning and studying the principle of the GPS ephemeris calculation and the carrier phase difference principle (RTK) in the static relative positioning of GPS. The special GPS data receiving technology, the GPS ephemeris calculation technique and the special GPS differential positioning technique for the seismic exploration are discussed, and the GPS differential positioning formula for the special GPS based on the OEMSTAR development board with independent intellectual property rights is derived. It needs to linearize the differential observation equation of the datum station and the flow station and eliminate the datum station and the mobile station. The carrier phase and clock difference related to the satellite and the receiver, and the corresponding error equation and the method equation are listed. According to the least square adjustment principle, the baseline vector is obtained. Through the known coordinates of the reference station, the common GPS positioning accuracy is raised from ten meters to the centimeter level, and the GPS data receiving software and the GPS data processing software are successfully developed. A set of special GPS differential positioning system for seismic exploration based on GPS OEMSTAR development board is completed, and the practicability and feasibility of the scheme are proved by receiving and processing actual data. At the same time, the low cost and high precision positioning of GPS is realized and the requirement of seismic exploration is met according to the characteristics of super GPS orderly arrangement in seismic exploration, and the base of this foundation is satisfied. On the base of this, the research of special GPS location method for 3D seismic exploration based on cloud computing is proposed. This method can solve the collection, storage and transmission of cloud in the GPS positioning cloud by developing high-speed parallel information synchronization acquisition mechanism, real-time GPS software signal processing and high performance exploration positioning model in three aspects. We study the problem of information cooperation, processing and scheduling in cloud services, establish a position cloud model for large-scale exploration and application, implement a high performance differential location method, complete the research of GPS positioning mechanism for large-scale exploration and provide technical support for the future development of 3D seismic exploration. On the basis of high precision positioning, we The idea of integration of seismic exploration positioning, acquisition and processing is put forward, and the first step static correction of seismic data processing is studied. A static correction method based on wave field extension which is suitable for both P wave and converted wave is obtained. The feasibility and effectiveness of the method are proved by simulation and actual data processing. In the process of processing, we use the special GPS differential positioning method for seismic exploration based on OEMSTAR development board to obtain the height data of the geophone corresponding to the surface of the earth, and apply it to the process of the continuation of the static correction, which has achieved good results. This also proves that the idea of integration of the location collection is correct.
This paper first summarizes and analyzes the problems of the time and cost of the current seismic exploration in GPS positioning technology, and points out the development needs of the future 3D seismic exploration for the positioning technology, and leads to the idea of using differential technology to realize low cost and high precision positioning of the common GPS chip, and outlines the construction of differential and domestic and foreign difference systems. The broad prospects of the GPS differential positioning system for seismic exploration are clarified. Then, the composition of the GPS satellite signals and the GPS satellite ephemeris are introduced and analyzed. The characteristics of the C/A code and the P code are summarized. The composition format of the GPS navigation message is explained. The specific significance of the ephemeris parameters and the specific significance of each parameter are introduced, which is the follow-up star. Based on the analysis of the errors in the GPS positioning, the necessity of the difference is pointed out, and the three difference methods, the position difference, the pseudo range difference and the carrier phase difference are explained, and their respective advantages and disadvantages are analyzed. On this basis, the GPS difference system for the future construction of the seismic exploration is proposed. The importance of the data link is given; then the GPS differential protocol RTCM message for the special seismic exploration is explained, and the text type 18,19 which is often used by the seismic exploration pseudo range difference and the message 20,21 which is often used by the phase difference of the seismic carrier phase is analyzed, and the similarities and differences of the 4 kinds of messages are summarized, and the parity check is based on the parity check. The process of coding and decoding of the special GPS difference protocol for seismic exploration is designed by method and bit transformation. The performance index, technical parameters, data interface and RINEX data format of OEMSTAR development board are introduced, and the GPS differential positioning formula for seismic exploration based on OEMSTAR development board is derived. It needs the reference station and the flow station. The difference observation equation linearized, eliminated the carrier phase and clock difference related to the datum station and the mobile station and the satellite and receiver, and listed the corresponding error equation and the method equation. On the basis of the least square adjustment principle, we put forward the study of the special GPS location method for the 3D seismic Exploration Based on the cloud calculation. The model of cloud computing is introduced to study the cloud collection, cloud storage, cloud transmission, cloud collaboration and cloud processing mechanism for the exploration cloud, to establish a cloud model for exploration and positioning, to realize the GPS differential high precision positioning processing method for exploration, to carry out actual simulation and experimental verification, and to develop a prototype system for the special GPS positioning method for large-scale exploration. To reduce the effect of the cost of large-scale GPS terminal, the receiving technology of GPS data is developed, the GPS ephemeris calculation technology is studied, and the GPS differential positioning algorithm for seismic exploration based on OEMSTAR development board is designed. Through actual experiments, the relative error of the front and the position of the northeast sky in the side, the northeast sky position and the northeast sky position are from the front. The algorithm has been proved in detail in several aspects, such as standard deviation, distance and blur drift rate. The conclusion of the algorithm is in centimeter level, and the stability of the algorithm is very high. It fully satisfies the demand of seismic exploration. It provides technical reserve for the application of GPS positioning method for large-scale exploration. On the other hand, we also put forward the idea of the integration of seismic exploration positioning, acquisition and processing, and studied the first step static correction of seismic data processing. A static correction method based on wave field extension which is applicable to both P and converted waves is obtained. The feasibility and effectiveness of the method are proved by simulation and actual data processing. In the process of actual data processing, we use the special GPS differential positioning method for seismic exploration based on OEMSTAR development board to obtain the height data of the geophone corresponding to the surface of the earth, and apply it to the process of the continuation of static correction, which has achieved good results. This also proves that the idea of integration of location acquisition and processing is correct.
Based on the research of low cost and high-precision positioning of GPS, the following achievements have been achieved.
(1) the GPS data receiving technology for seismic exploration based on OEMSTAR development board with independent intellectual property rights, seismic exploration GPS ephemeris technology, and GPS differential positioning technique for seismic exploration are developed.
(2) a special GPS differential positioning formula for seismic exploration based on OEMSTAR development board is derived. The coding and decoding process of the special GPS differential message for seismic exploration is designed, and the low cost and high precision positioning of the seismic exploration GPS is realized through practical experiments.
(3) developed a set of GPS data receiving software and GPS data processing software for seismic exploration based on OEMSTAR development board.
(4) a special GPS positioning technology for 3D seismic exploration based on cloud computing and the idea of integration of acquisition and processing equipment in future 3D seismic exploration are proposed, and the first step static correction of seismic data processing is studied. A static correction method based on wave field extension which is suitable for both P and converted waves is obtained, and the special GP for seismic exploration is used. The S differential positioning method obtains the height data corresponding to the surface of the geophone.
【学位授予单位】:吉林大学
【学位级别】:博士
【学位授予年份】:2013
【分类号】:P631.4

【参考文献】

相关期刊论文 前10条

1 初东,王刚;GPS天线相位中心偏差的数学模型[J];测绘工程;2000年04期

2 孙正明;高井祥;王坚;;GPS广播星历误差及对单点定位的影响[J];测绘工程;2007年06期

3 朱志宇,刘维亭,张冰;差分GPS载波相位整周模糊度快速解算方法[J];测绘科学;2005年03期

4 周立;GPS广播星历误差影响诊断与预测模型研究[J];测绘科学;2005年04期

5 宋成;王飞雪;庄钊文;;基于遗忘因子最小二乘的GPS接收机钟差预测算法研究[J];测绘科学;2008年S3期

6 陈逸群,刘大杰;GPS接收机天线相位中心偏差的一种检定与计算方法[J];测绘通报;2000年12期

7 袁林果,黄丁发,丁晓利,熊永良,钟萍,李成钢;GPS载波相位测量中的信号多路径效应影响研究[J];测绘学报;2004年03期

8 李征航;全球定位系统(GPS)技术新进展──第二讲差分GPS[J];武测科技;1996年01期

9 张文山;;GPS测量误差分析及控制[J];测绘与空间地理信息;2008年03期

10 李保杰;;GPS与传统测量技术在地质勘查中应用比较[J];地理空间信息;2011年03期

相关博士学位论文 前4条

1 陈树新;GPS整周模糊度动态确定的算法及性能研究[D];西北工业大学;2002年

2 袁运斌;基于GPS的电离层监测及延迟改正理论与方法的研究[D];中国科学院研究生院(测量与地球物理研究所);2002年

3 吴北平;GPS网络RTK定位原理与数学模型研究[D];中国地质大学;2003年

4 章红平;基于地基GPS的中国区域电离层监测与延迟改正研究[D];中国科学院研究生院(上海天文台);2006年

相关硕士学位论文 前10条

1 文继超;基于OEM板的差分GPS定位系统的研究与实现[D];中南大学;2011年

2 董锐;基于神经网络的函数逼近方法研究[D];东北师范大学;2011年

3 张九宴;GPS差分协议及基准站算法研究[D];武汉大学;2003年

4 范胜军;顾及地磁场影响的电离层高阶项改正算法研究[D];武汉大学;2005年

5 牛国朋;单频软件GPS接收机设计与实现研究[D];中国科学院研究生院(空间科学与应用研究中心);2006年

6 何玉晶;GPS电离层延迟改正及其扰动监测的分析研究[D];解放军信息工程大学;2006年

7 徐周;GPS差分定位技术及实现方法的研究[D];解放军信息工程大学;2006年

8 徐敏;实时GPS软件接收机研究与实现[D];上海交通大学;2007年

9 袁翠;差分GPS算法及仿真研究[D];大连海事大学;2007年

10 张旭;GPS载波相位定位算法研究与仿真[D];哈尔滨工程大学;2007年



本文编号:2163343

资料下载
论文发表

本文链接:https://www.wllwen.com/falvlunwen/zhishichanquanfa/2163343.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户52bee***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com