CALYPSO结构预测方法在高压材料和行星科学中的几个典型应用
[Abstract]:The theoretical prediction of condensed matter structure is a challenging subject in materials, physics and chemistry. Based on particle swarm optimization (PSO), the author and other members of the research group proposed and developed the Carripsos (CALYPSO) structure prediction method by introducing the bond-forming characteristic matrix of structural representation. The CALYPSO structure prediction software with independent intellectual property rights has been developed and has become an important method and tool in the field of international structure prediction. On this basis, the typical systems of materials and planetary science are studied in this paper, and the following innovative results are obtained: 1. Bismuth tritelluride (Bi2Te3) is a kind of excellent thermoelectric material and a typical topological insulator under atmospheric pressure. Since 1972, it has been found that there are two structural phase transitions in Bi2Te3 at high pressure, accompanied by the appearance of superconductivity. To understand the origin of superconductivity, it is necessary to understand the structure of the new phase at high voltage. In this paper, the independently developed CALYPSO structure prediction method is used to predict that the two high pressure phases of Bi2Te3 are monoclinic structures with 7 coordinated bismuth and 8 coordinated bismuth, respectively, and confirmed by high pressure X-ray diffraction experiments. The research work has solved the difficult problem of Bi2Te3 high pressure structure which has been puzzling for nearly 40 years. At more than 144000 atmospheres, it is found that Bi2Te3 is transformed into a Bi- Te substitute alloy with disordered body-centered cubic structure. 2. As a long-term topic in physics, chemistry and planetary science, the decompression molecular dissociation of diatomic molecular solids has long been the focus of attention. In this paper, the diatomic molecular dissociation of solid oxygen is theoretically realized at 19 million atmospheres by using CALYPSO structure prediction method, and the solid oxygen is transformed into a spiral chain atomic phase structure. Surprisingly, the molecular dissociation of solid oxygen leads to the transition of solid oxygen from metal to insulating phase, contrary to the traditional idea of high pressure metallization. 3. The study shows that 90% of the xenon (Xe) is missing in the Earth's atmosphere, which is known as "Missing Xe Paradox" in planetary science, or "the enigma of the disappearance of xenon". It is generally believed that Xe is stored in the interior of the earth, but the location and shape of the existence is a subject of long controversy in the field of geoscience. It is considered that Xe and iron (the main elements in the core) cannot react to form stable compounds, which excludes the possibility of Xe stored in the core. By using CALYPSO structure prediction method, it is proposed that Xe can react with iron and nickel at the pressure and temperature in the core for the first time to form a series of stable compounds (for example, XeFe3, XeFe5, XeNi3, XeNi5, etc.). The results of this paper refute the previous conclusion that Xe and iron cannot react, and that the core can be a hiding place for xenon, which may provide an answer to the mystery of the disappearance of xenon. 4. The core of the earth is composed of 85% of iron, 5% of nickel and 10% of light elements. Oxygen is also one of the main light elements in the core. For a long time, it has been widely believed that ferrite compounds that exist stably in inland nuclei are FeO. However, the form in which ferrite compounds exist in the inland nuclear environment remains to be explored. We have studied the possible forms of elemental oxygen in iron-rich environments in inland nuclei by using CALYPSO structure prediction method. The study found that ferrite compounds stably present in inland nuclei are not generally considered FeO, but should be Fe3O. This work provides an important theoretical basis for people to understand the structure of the earth's core.
【学位授予单位】:吉林大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:O521.2
【相似文献】
相关期刊论文 前10条
1 林潮;;行星创世记[J];飞碟探索;2009年11期
2 廖新浩;;行星科学和深空探测研究与发展[J];中国科学院院刊;2011年05期
3 毕延,经福谦;动高压物理在地球与行星科学研究中的应用[J];地学前缘;2005年01期
4 谢懿;能深入地表探测的行星雷达[J];世界科学;2005年08期
5 曾佐勋;肖龙;;参加第39届月球和行星科学大会的几点感受[J];地质科技情报;2008年03期
6 ;1988年国际会议预告[J];地球科学进展;1988年03期
7 曾佐勋;刘立林;岳宗玉;;参加“第38届月球与行星科学大会”随想[J];地质科技情报;2007年03期
8 ;稀土项目在“第五次蔡冠深行星科学奖?评选中获科技成果奖[J];稀土信息;2005年10期
9 ;侯增谦荣获“《地球与行星科学通讯》2004-2007年度被引用次数最多的论文作者奖”[J];地球学报;2008年02期
10 谢懿;天空中有三个太阳[J];世界科学;2005年08期
相关会议论文 前10条
1 朱祥坤;唐索寒;;天体化学与比较行星学[A];“十五”重要地质科技成果暨重大找矿成果交流会材料四——“十五”地质行业重要地质科技成果资料汇编[C];2006年
2 熊小林;J.Adam;T.H.Green;;Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for Adakite/TTG genesis[A];火山作用与地球层圈演化——全国第四次火山学术研讨会论文摘要集[C];2005年
3 袁勇;胡震宇;陈辉;汪海;;火星硬着陆探测技术[A];中国宇航学会深空探测技术专业委员会第七届学术年会论文集[C];2010年
4 于晟;陈槞;朱日祥;石耀霖;乔森;吴忠良;;国家地球物理基础设施:意义和任务[A];纪念中国地球物理学会成立60周年专辑[C];2007年
5 杨献忠;;第十五届国际矿物学大会在北京举行[A];中国地质科学院南京地质矿产研究所文集(46)[C];1990年
6 唐索寒;何学贤;王进辉;朱祥坤;;多接收电感耦合等离子体质谱法测定Nd同位素标准物质[A];2005年全国无机质谱、同位素质谱和质谱仪器学术报告会论文集[C];2005年
7 邱永泉;;IUGS 1991-1993年重要国际会议[A];中国地质科学院南京地质矿产研究所文集(49)[C];1991年
8 史仁灯;杨经绥;吴才来;Tsuyoshi Iizuka;Takafumi Hirata;;柴达木北缘超高压变质带中的岛弧火山岩[A];2004年全国岩石学与地球动力学研讨会论文摘要集[C];2004年
9 欧阳自远;;重返月球的前景与我国的月球探测[A];面向21世纪的科技进步与社会经济发展(上册)[C];1999年
10 谢志东;王鹤年;;陨石冲击变质研究[A];中国矿物岩石地球化学学会第12届学术年会论文集[C];2009年
相关重要报纸文章 前10条
1 雷宇 王渊;我国应加快行星科学人才培养步伐[N];中国矿业报;2010年
2 ;中国行星科学研究时代来临[N];中国矿业报;2009年
3 司徒瑜;侯增谦提出埃达克岩成因新模式[N];地质勘查导报;2008年
4 本报记者 黄永明;发现了一颗“外星地球”?[N];南方周末;2010年
5 Everett 编译;月球形成之谜有新解[N];中国矿业报;2011年
6 陈枫;我们也许是外星人?[N];工人日报;2008年
7 本报记者 刘静文 于德福 本报特约记者 司徒瑜;像研究地球那样研究月球[N];地质勘查导报;2009年
8 记者 张丽华;加强科学交流 建立合作渠道[N];中国矿业报;2011年
9 记者 常丽君;美设计出“地外基因组研究”设备[N];科技日报;2011年
10 马佳 唐逸;众天文学家抗议冥王星“下岗”[N];北京科技报;2006年
相关博士学位论文 前5条
1 朱黎;CALYPSO结构预测方法在高压材料和行星科学中的几个典型应用[D];吉林大学;2014年
2 宫衍香;系外行星系统中的散射机制及行星内部结构[D];南京大学;2013年
3 谢基伟;双星系统中行星的形成及动力学[D];南京大学;2011年
4 孔维刚;月球及火星科学中的三个矿物学问题[D];山东大学;2011年
5 梁青;月球重力异常特征与三维密度成像研究[D];中国地质大学;2010年
相关硕士学位论文 前1条
1 吕莎;太空保护的价值论研究[D];北京化工大学;2011年
本文编号:2296879
本文链接:https://www.wllwen.com/falvlunwen/zhishichanquanfa/2296879.html