并联混合动力汽车能量控制策略研究

发布时间:2018-11-19 14:38
【摘要】:随着世界社会经济的高速发展,能源危机和环境污染问题日益凸显。并联式混合动力汽车因具有环保、节能和技术相对成熟等优点而备受关注。并联混合动力汽车的能量控制策略的优劣是影响汽车能耗的重要因素,因此在满足汽车动力性的前提下,优化并联式混合动力汽车能量控制策略对控制能源危机和实现环境的可持续发展具有非常重要的现实意义。 论文以并联混合动力汽车能量控制系统为研究对象,对发动机转矩和电机转矩的分配问题进行了深入研究。在分析了并联混合动力汽车的驱动系统结构和结合方式的基础上,建立了发动机数学模型、电机数学模型、蓄电池数学模型、车轮数学模型和传动系动力学方程,并构建了能量控制策略的优化数学模型。因并联混合动力汽车能量控制系统具有动态非线性的特点,论文采用模糊神经网络算法对发动机转矩和电机转矩进行优化分配,分别设计了基于模糊逻辑算法的能量控制策略和基于模糊神经网络算法的能量控制策略,为仿真平台提供了理论基础。 在模糊神经网络能量控制策略中,根据并联混合动力汽车控制策略的优化数学模型,采用补偿神经网络结构,构建由输入层、隐含层和输出层组成的前向神经网络,使网络的输入层与模糊逻辑算法的模糊化过程对应,网络的隐含层与模糊推理过程对应,网络的输出层与解模糊过程对应,为了解决神经网络节点与模糊逻辑输入输出接口统一的问题,通过量化公式对输入输出变量进行量化处理,进而利用神经网络自学习和自适应的能力,自动生成模糊规则和隶属函数,并不断优化神经网络输入输出隶属函数的中心和宽度。为了提高系统精度,加快收敛速度,神经网络采用动态调整步长补偿梯度下降的学习算法对能量控制策略进行优化。 以丰田普锐斯轿车为例,在ADVISOR2002软件环境下,建立了整车的后向仿真模型,其中包括发动机、电机、蓄电池、传动系和汽车行驶动力学模型,为整车控制策略研究和开发提供了必要的仿真平台,并基于此仿真平台,在典型的NEDC循环工况下,对采用模糊逻辑能量控制策略和采用模糊神经网络能量控制策略的控制系统进行仿真,仿真结果验证了模糊神经网络能量控制策略的有效性。采用模糊神经网络能量控制策略,,能够同时保证发动机和电机工作在高效区域,从而提高了整车燃油经济性和排放性。论文对模糊神经网络能量控制策略的研究,对我国自主研发新型节能环保汽车,提高混合动力汽车能量控制系统设计水平,构建自主知识产权的汽车电子开发平台具有重要意义
[Abstract]:With the rapid development of world economy, energy crisis and environmental pollution have become increasingly prominent. Parallel hybrid vehicles (HEVs) have attracted much attention because of their advantages of environmental protection, energy saving and relatively mature technology. The energy control strategy of the parallel hybrid electric vehicle is an important factor that affects the energy consumption of the vehicle. Therefore, under the premise of satisfying the power performance of the vehicle, Optimizing the energy control strategy of parallel hybrid electric vehicle (HEV) is of great practical significance in controlling the energy crisis and realizing the sustainable development of the environment. In this paper, the energy control system of parallel hybrid electric vehicle is taken as the research object, and the distribution of engine torque and motor torque is studied deeply. On the basis of analyzing the driving system structure and combination mode of parallel hybrid electric vehicle, the mathematical model of engine, motor, battery, wheel and dynamic equation of transmission system are established. The optimal mathematical model of energy control strategy is constructed. Because the energy control system of parallel hybrid electric vehicle has the characteristics of dynamic nonlinearity, the fuzzy neural network algorithm is used to optimize the distribution of engine torque and motor torque. The energy control strategy based on fuzzy logic algorithm and the energy control strategy based on fuzzy neural network algorithm are designed respectively, which provides the theoretical basis for the simulation platform. In the energy control strategy of fuzzy neural network, according to the optimal mathematical model of the control strategy of parallel hybrid electric vehicle, a forward neural network composed of input layer, hidden layer and output layer is constructed by using compensatory neural network structure. The input layer of the network corresponds to the fuzzy process of the fuzzy logic algorithm, the hidden layer of the network corresponds to the fuzzy reasoning process, and the output layer of the network corresponds to the process of resolving the fuzzy logic. In order to solve the problem of the unity of the interface between the neural network node and the fuzzy logic input and output, the input and output variables are quantized by the quantization formula, and then the self-learning and adaptive ability of the neural network is utilized. The fuzzy rules and membership functions are generated automatically, and the center and width of the input and output membership functions of the neural network are optimized continuously. In order to improve the accuracy of the system and speed up the convergence, the neural network optimizes the energy control strategy by using the learning algorithm of dynamically adjusting the step size to compensate for the gradient descent. Taking the Toyota Prius car as an example, the backward simulation model of the whole vehicle is established under the environment of ADVISOR2002 software, which includes engine, motor, battery, transmission system and vehicle driving dynamics model. It provides a necessary simulation platform for the research and development of vehicle control strategy, and based on this simulation platform, under typical NEDC cycle conditions, The fuzzy logic energy control strategy and the fuzzy neural network energy control strategy are simulated. The simulation results verify the effectiveness of the fuzzy neural network energy control strategy. The fuzzy neural network (FNN) energy control strategy can ensure that the engine and motor can work in the high efficiency area at the same time, thus improving the fuel economy and emission performance of the whole vehicle. The research on the fuzzy neural network energy control strategy is of great significance to the independent research and development of new energy saving and environmental protection vehicles in China, to improve the design level of hybrid electric vehicle energy control system, and to construct the automobile electronic development platform with independent intellectual property rights.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:U469.7

【参考文献】

相关期刊论文 前7条

1 杨书强;牛一川;;并联式混合动力汽车能量管理策略的控制仿真[J];机械与电子;2011年11期

2 周志坚,毛宗源;一种最优模糊神经网络控制器[J];控制与决策;2000年03期

3 纪峻岭;齐晓杰;朱荣福;;丰田混合动力汽车驱动系统结构分析及性能研究[J];内燃机;2007年06期

4 黄振跃;张好明;孙玉坤;;新型并联混合动力汽车驱动系统研究[J];微电机;2008年05期

5 邓亚东;陈田俊;苏楚奇;;并联混合动力驱动系统模糊控制策略研究[J];武汉理工大学学报;2007年06期

6 钱立军,袭著永,金德全;混合动力电动汽车控制策略的设计与仿真[J];系统仿真学报;2005年03期

7 彭涛,陈全世;并联混合动力电动汽车的模糊能量管理策略[J];中国机械工程;2003年09期

相关博士学位论文 前2条

1 申彩英;串联混合动力汽车能量优化管理策略研究[D];天津大学;2010年

2 吴剑;并联式混合动力汽车能量管理策略优化研究[D];山东大学;2008年

相关硕士学位论文 前10条

1 田彤;混合动力重型商用车部件选型及性能仿真[D];武汉理工大学;2011年

2 王聪慧;混合动力电动汽车能量管理系统模糊控制策略[D];河南科技大学;2011年

3 田甜;单轴并联式混合动力汽车能量管理策略的研究[D];南京林业大学;2011年

4 胡仕泳;基于模糊神经网络的立辊传动智能控制系统的设计[D];武汉科技大学;2005年

5 刘胜铁;并联混合动力客车模糊控制策略的研究[D];吉林大学;2006年

6 明绍民;并联混合动力汽车模糊逻辑控制策略的研究[D];吉林大学;2007年

7 刘宏伟;基于单片机的模糊控制方法及应用研究[D];武汉理工大学;2007年

8 刘文杰;混联型混合动力汽车控制策略优化研究[D];重庆大学;2007年

9 倪颖倩;电动汽车关键技术[D];南京理工大学;2008年

10 朱传高;并联混合动力汽车遗传模糊控制策略的优化研究[D];吉林大学;2009年



本文编号:2342636

资料下载
论文发表

本文链接:https://www.wllwen.com/falvlunwen/zhishichanquanfa/2342636.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户9ce70***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com