并联混合动力汽车能量控制策略研究
[Abstract]:With the rapid development of world economy, energy crisis and environmental pollution have become increasingly prominent. Parallel hybrid vehicles (HEVs) have attracted much attention because of their advantages of environmental protection, energy saving and relatively mature technology. The energy control strategy of the parallel hybrid electric vehicle is an important factor that affects the energy consumption of the vehicle. Therefore, under the premise of satisfying the power performance of the vehicle, Optimizing the energy control strategy of parallel hybrid electric vehicle (HEV) is of great practical significance in controlling the energy crisis and realizing the sustainable development of the environment. In this paper, the energy control system of parallel hybrid electric vehicle is taken as the research object, and the distribution of engine torque and motor torque is studied deeply. On the basis of analyzing the driving system structure and combination mode of parallel hybrid electric vehicle, the mathematical model of engine, motor, battery, wheel and dynamic equation of transmission system are established. The optimal mathematical model of energy control strategy is constructed. Because the energy control system of parallel hybrid electric vehicle has the characteristics of dynamic nonlinearity, the fuzzy neural network algorithm is used to optimize the distribution of engine torque and motor torque. The energy control strategy based on fuzzy logic algorithm and the energy control strategy based on fuzzy neural network algorithm are designed respectively, which provides the theoretical basis for the simulation platform. In the energy control strategy of fuzzy neural network, according to the optimal mathematical model of the control strategy of parallel hybrid electric vehicle, a forward neural network composed of input layer, hidden layer and output layer is constructed by using compensatory neural network structure. The input layer of the network corresponds to the fuzzy process of the fuzzy logic algorithm, the hidden layer of the network corresponds to the fuzzy reasoning process, and the output layer of the network corresponds to the process of resolving the fuzzy logic. In order to solve the problem of the unity of the interface between the neural network node and the fuzzy logic input and output, the input and output variables are quantized by the quantization formula, and then the self-learning and adaptive ability of the neural network is utilized. The fuzzy rules and membership functions are generated automatically, and the center and width of the input and output membership functions of the neural network are optimized continuously. In order to improve the accuracy of the system and speed up the convergence, the neural network optimizes the energy control strategy by using the learning algorithm of dynamically adjusting the step size to compensate for the gradient descent. Taking the Toyota Prius car as an example, the backward simulation model of the whole vehicle is established under the environment of ADVISOR2002 software, which includes engine, motor, battery, transmission system and vehicle driving dynamics model. It provides a necessary simulation platform for the research and development of vehicle control strategy, and based on this simulation platform, under typical NEDC cycle conditions, The fuzzy logic energy control strategy and the fuzzy neural network energy control strategy are simulated. The simulation results verify the effectiveness of the fuzzy neural network energy control strategy. The fuzzy neural network (FNN) energy control strategy can ensure that the engine and motor can work in the high efficiency area at the same time, thus improving the fuel economy and emission performance of the whole vehicle. The research on the fuzzy neural network energy control strategy is of great significance to the independent research and development of new energy saving and environmental protection vehicles in China, to improve the design level of hybrid electric vehicle energy control system, and to construct the automobile electronic development platform with independent intellectual property rights.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:U469.7
【参考文献】
相关期刊论文 前7条
1 杨书强;牛一川;;并联式混合动力汽车能量管理策略的控制仿真[J];机械与电子;2011年11期
2 周志坚,毛宗源;一种最优模糊神经网络控制器[J];控制与决策;2000年03期
3 纪峻岭;齐晓杰;朱荣福;;丰田混合动力汽车驱动系统结构分析及性能研究[J];内燃机;2007年06期
4 黄振跃;张好明;孙玉坤;;新型并联混合动力汽车驱动系统研究[J];微电机;2008年05期
5 邓亚东;陈田俊;苏楚奇;;并联混合动力驱动系统模糊控制策略研究[J];武汉理工大学学报;2007年06期
6 钱立军,袭著永,金德全;混合动力电动汽车控制策略的设计与仿真[J];系统仿真学报;2005年03期
7 彭涛,陈全世;并联混合动力电动汽车的模糊能量管理策略[J];中国机械工程;2003年09期
相关博士学位论文 前2条
1 申彩英;串联混合动力汽车能量优化管理策略研究[D];天津大学;2010年
2 吴剑;并联式混合动力汽车能量管理策略优化研究[D];山东大学;2008年
相关硕士学位论文 前10条
1 田彤;混合动力重型商用车部件选型及性能仿真[D];武汉理工大学;2011年
2 王聪慧;混合动力电动汽车能量管理系统模糊控制策略[D];河南科技大学;2011年
3 田甜;单轴并联式混合动力汽车能量管理策略的研究[D];南京林业大学;2011年
4 胡仕泳;基于模糊神经网络的立辊传动智能控制系统的设计[D];武汉科技大学;2005年
5 刘胜铁;并联混合动力客车模糊控制策略的研究[D];吉林大学;2006年
6 明绍民;并联混合动力汽车模糊逻辑控制策略的研究[D];吉林大学;2007年
7 刘宏伟;基于单片机的模糊控制方法及应用研究[D];武汉理工大学;2007年
8 刘文杰;混联型混合动力汽车控制策略优化研究[D];重庆大学;2007年
9 倪颖倩;电动汽车关键技术[D];南京理工大学;2008年
10 朱传高;并联混合动力汽车遗传模糊控制策略的优化研究[D];吉林大学;2009年
本文编号:2342636
本文链接:https://www.wllwen.com/falvlunwen/zhishichanquanfa/2342636.html