基于金字塔多尺度LBP和自学习哈希的面料图像检索算法研究
[Abstract]:With the rapid development of Internet and multimedia information technology, content-based image retrieval has become a hot research topic in the field of information, and is widely used in public security system, medical system, intellectual property maintenance system and so on. This paper focuses on the application of image retrieval in textile industry, and explores the retrieval methods suitable for fabric image in order to meet the more and more fashion needs of users. In this paper, the characteristics of fabric image are deeply analyzed, the retrieval algorithm is studied from two aspects of feature extraction and index construction, and a fabric image retrieval algorithm based on pyramid multi-scale LBP and self-learning hash is proposed. The main work and innovations of this paper are as follows: 1. A pyramid multi-scale LBP feature extraction algorithm is proposed. In this paper, the typical LBP operators are introduced, and the shortcomings of several existing multi-scale LBP operators are deeply analyzed. Based on the characteristics of fabric images, a pyramid multi-scale LBP feature extraction algorithm is proposed. Firstly, the fabric image is decomposed into pyramids, and then the multi-radius LBP operator of sampling points is extracted from each layer of pyramid image. Compared with other existing multi-scale LBP algorithms, the pyramid multi-scale LBP algorithm proposed in this paper has a wider range of feature extraction and stronger feature expression ability, and can effectively describe the texture information of fabric images. 2. The self-learning hash algorithm is applied to fabric image retrieval. In this paper, several hash techniques are analyzed. In view of the shortcomings of the existing methods, the self-learning hash algorithm used in text information retrieval is applied to image retrieval, and the self-learning hash process is improved according to the difference between image and text data. The improved self-learning hash algorithm is used to index the fabric image, which greatly saves the data storage space and reduces the amount of computation. On the basis of the first two algorithms, a fabric image retrieval algorithm based on pyramid multi-scale LBP and self-learning hash is proposed. The algorithm uses pyramid multi-scale LBP operator to extract the features of fabric image, combines the local information and global information of the image, and effectively describes the texture structure of fabric image. In the index construction stage, the improved self-learning hash algorithm is used to effectively retain the similar structure of the original spatial image data. The experimental results show that the retrieval performance of the proposed algorithm is generally better than that of other related algorithms.
【学位授予单位】:合肥工业大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP391.41
【相似文献】
相关期刊论文 前10条
1 丁晓莲;周激流;李晓华;吴朋;;人脸识别率与图像分辨率关系的比较分析[J];计算机工程;2009年11期
2 贾丽娟;;关于图像分辨率的教学思考[J];印刷世界;2011年05期
3 张秀屏,刘锡国,,丛玉良;提高彩电图像分辨率的研讨[J];光学精密工程;1994年02期
4 周中华;如何使拷屏图像更清楚[J];桌面出版与设计;1999年04期
5 林阿岚;;如何取得完美图像[J];电子测试;2001年08期
6 宋其华;郭根生;;解析计算机图像分辨率[J];中国电化教育;2003年11期
7 冯金菊;;浅谈分辨率[J];才智;2008年22期
8 江静;蔡鹤;;小议分辨率与输出图像的关系[J];科教文汇(上旬刊);2008年03期
9 李春雨;李卫平;;篡改图像的识别技术研究与仿真[J];计算机仿真;2011年11期
10 ;教你详细了解各种分辨率[J];计算机与网络;2011年24期
相关会议论文 前10条
1 王江宁;纪力强;;昆虫图像特征研究[A];第十五届全国图象图形学学术会议论文集[C];2010年
2 杨德强;苏光大;徐天伟;;一种基于幻想脸的人脸图像分辨率提升新技术[A];第二十七届中国控制会议论文集[C];2008年
3 张莉;李佩臻;;用Photoshop对1:1万DRG入库数据的处理[A];全国测绘科技信息网中南分网第二十一次学术信息交流会论文集[C];2007年
4 任晓晖;龚勇清;;体全息存储再现图像分辨率实验研究[A];第十一届全国光学测试学术讨论会论文(摘要集)[C];2006年
5 廖熠;赵荣椿;;一种基于小波分层模型的自然景物图像表面恢复算法[A];第十届全国信号处理学术年会(CCSP-2001)论文集[C];2001年
6 刘达;李枢平;;对DCI数字影院技术规范中图像分级技术的理解[A];中国电影电视技术学会影视技术文集[C];2007年
7 汤敏;王惠南;;基于IDL语言的医学图像可视化初步研究[A];第十二届全国图象图形学学术会议论文集[C];2005年
8 赵源萌;邓朝;张馨;张存林;;被动式人体太赫兹安检成像的分辨率增强算法研究[A];中国光学学会2011年学术大会摘要集[C];2011年
9 张尚军;徐光;祁小江;;影响CR胶片质量原因的探讨[A];2009中华医学会影像技术分会第十七次全国学术大会论文集[C];2009年
10 何东晓;隋守鑫;刘微;;高清透雾摄像机的研发及在交通领域的应用[A];第八届中国智能交通年会优秀论文集——智能交通与安全[C];2013年
相关重要报纸文章 前10条
1 刘筱霞;陈永常;PHOTOSHOP中图像分辨率的设置[N];中国包装报;2002年
2 王树连;从购买图像到租用卫星[N];中国测绘报;2003年
3 杨兴平;如何抓取指定分辨率的图像[N];中国电脑教育报;2003年
4 李鑫;飞利浦200BW8商务人士明智新宠[N];电子资讯时报;2007年
5 记者 曾遗荣邋通讯员 冷承秋 实习生 向哲林;美国一高科技公司将落户武汉[N];湖北日报;2007年
6 唐凤碧;正确运用数码相机分辨率[N];中国摄影报;2007年
7 ;创维TWH-43L(DLP)光显背投图像不良的检修[N];电子报;2008年
8 WLF;细说分辨率[N];电脑报;2003年
9 宏杉;感受专业动力[N];中国计算机报;2001年
10 宋连党;家庭VCD像册大制作[N];中国电脑教育报;2003年
相关博士学位论文 前10条
1 吴辉群;慢性病信息管理系统中视网膜图像的互操作性及其血管网络定量分析研究[D];复旦大学;2014年
2 田虎;单目图像的深度估计[D];北京邮电大学;2015年
3 唐玉芳;商品图像分类算法研究[D];北京邮电大学;2015年
4 贾勇;建筑物透视探测关键技术研究[D];电子科技大学;2014年
5 黄仁杰;非可控条件下人脸识别中的若干问题研究[D];电子科技大学;2015年
6 万方;基于多幅图像的三维结构化场景重建技术研究[D];武汉大学;2013年
7 马钟;视觉感知启发的对象发现关键技术研究[D];西北工业大学;2015年
8 张旭;面向局部特征和特征表达的图像分类算法研究[D];合肥工业大学;2016年
9 王洪;航空光电平台图像稳定技术研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2012年
10 孙艳;基于内容图像检索与敏感图像过滤的若干算法研究[D];吉林大学;2011年
相关硕士学位论文 前10条
1 杨栋;面向CTA图像的冠脉血管分割算法研究和血管狭窄度分析[D];浙江大学;2015年
2 龚若皓;基于嵌入式移动GPU的图像编解码并行优化[D];西南交通大学;2015年
3 曹福来;发动机燃油喷雾图像筛选及处理方法的分析研究[D];长安大学;2015年
4 张弛;基于卷积神经网络的鞋印图像分类算法研究[D];大连海事大学;2016年
5 张贵平;图像视点调整技术研究[D];南京大学;2014年
6 李杰;高速图像数据实时存储与显示关键技术研究[D];中北大学;2016年
7 胡蓓蕾;基于图像融合的水下图像颜色恢复[D];中国海洋大学;2015年
8 周黎;基于千兆网的高性能嵌入式图像处理技术研究[D];中国科学院研究生院(光电技术研究所);2016年
9 顾帮忠;基于CCD的DR影像校正[D];东南大学;2015年
10 张磊;铆钉尺寸与表面缺陷在线检测关键技术研究[D];西南交通大学;2016年
本文编号:2501326
本文链接:https://www.wllwen.com/falvlunwen/zhishichanquanfa/2501326.html