基于Copula-Jump-GARCH模型的借贷资产组合优化
发布时间:2018-01-03 16:09
本文关键词:基于Copula-Jump-GARCH模型的借贷资产组合优化 出处:《南京财经大学》2013年硕士论文 论文类型:学位论文
更多相关文章: Jump-GARCH模型 Copula函数 CVaR
【摘要】:按照均值-方差思想,资产组合优化就是找到收益率一定风险最小的资产组合或者是一定风险下的收益率最大的资产组合。传统的均值-方差理论同时假设单个资产和联合分布都服从正态分布。但是大量的实证研究结果表明资产的收益率往往表现出波动性聚类、尖峰厚尾性和跳跃性等特点,而资产之间的相关关系也呈现出非线性。因此用传统的均值-方差模型来寻找资产组合的最优化策略已经不符合现实。 为了克服传统理论的不足,本文主要运用Jump-GARCH模型来拟合单个资产的收益率,用Copula函数来刻画资产之间的相关结构关系,并把两者相结合共同描述资产组合的联合分布,用Mean-CVaR方法来解决借贷资产组合优化问题,通过计算一定期望收益率下的最小CVaR值得到最优借贷资产配置策略。 本文分别用GARCH、SV和Jump-GARCH模型对上证综合指数进行拟合对比分析,发现Jump-GARCH模型能够更好地拟合资产收益率的各种特性。用Jump-GARCH模型对中国联通、中国石化和中青旅这三家公司的收益率进行研究,并通过对比刻画三家公司之间相关结构的几种Copula函数,最终得到了t-Copula函数能够更好地构建资产组合之间的相关结构。最后在Mean-CVaR模型的限制下,得到了借贷资产的最优配置策略。这给银行在决策投放贷款比例时,,提供了一定的理论指导。
[Abstract]:According to the mean-variance idea. Portfolio optimization is to find the portfolio with the minimum return rate or the largest yield under a certain risk. The traditional mean-variance theory assumes that both the individual asset and the joint distribution are conformable to each other. But a large number of empirical results show that the return rate of assets tends to show volatility clustering. The correlation between assets is nonlinear, so the traditional mean-variance model is not in line with the reality. In order to overcome the shortcomings of traditional theory, this paper mainly uses Jump-GARCH model to fit the return rate of a single asset, and uses Copula function to describe the relationship between assets. And the combination of the two to describe the joint distribution of portfolio, using the Mean-CVaR method to solve the loan portfolio optimization problem. By calculating the minimum CVaR value under a certain expected rate of return, the optimal loan asset allocation strategy is obtained. In this paper, GARCHN SV and Jump-GARCH models are used to compare and analyze Shanghai Composite Index. It is found that the Jump-GARCH model can better fit the various characteristics of the return on assets. The Jump-GARCH model is applied to China Unicom. The return rate of Sinopec and China Youth Tours is studied, and several Copula functions are compared to describe the correlation structure between the three companies. Finally, the t-Copula function can better construct the correlation structure between asset combinations. Finally, under the limitation of Mean-CVaR model. The optimal allocation strategy of loan assets is obtained, which provides certain theoretical guidance for banks to make decision on loan ratio.
【学位授予单位】:南京财经大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:F224;F832.51
【参考文献】
相关期刊论文 前10条
1 岳瑞锋,李振东,杨晓萍;风险管理的CVaR方法及其简化模型[J];河北省科学院学报;2003年03期
2 余素红,张世英,宋军;基于GARCH模型和SV模型的VaR比较[J];管理科学学报;2004年05期
3 陈浪南;孙坚强;;股票市场资产收益的跳跃行为研究[J];经济研究;2010年04期
4 童汉飞;刘宏伟;;中国股市收益率与波动率跳跃性特征的实证分析[J];南方经济;2006年05期
5 谢赤,邓艺颖;描述利率动态行为的GARCH-JUMP模型[J];数量经济技术经济研究;2003年03期
6 孙志宾;;混合Copula模型在中国股市的应用[J];数学的实践与认识;2007年20期
7 包卫军;徐成贤;;基于多维t-Copula函数的投资组合的CVaR分析[J];统计与决策;2008年20期
8 郭文旌;徐少丽;;基于Copula-EGARCH-CVaR的投资组合优化[J];统计与决策;2009年18期
9 包卫军;胡杰;;基于多维Copula函数的投资组合CVaR分析[J];统计与信息论坛;2008年09期
10 杨益党;罗羡华;;Copula函数的参数估计[J];新疆师范大学学报(自然科学版);2007年02期
本文编号:1374610
本文链接:https://www.wllwen.com/guanlilunwen/bankxd/1374610.html