基于修正KMV模型的我国商业银行信用风险测度
[Abstract]:As one of the most important types of financial risk faced by commercial banks in China, credit risk plays a vital role in the overall development of commercial banks. Compared with the western developed countries, the credit risk management level of our commercial banks is obviously backward, and the credit risk management system needs to be improved. Especially, there is a big gap between risk management tools and technology compared with commercial banks in developed countries. Therefore, if our commercial banks want to develop steadily and participate in the fierce international financial market competition, we must improve the ability of risk identification, evaluation, control, and absorb and apply some mature risk management techniques from abroad. Then a scientific risk identification, detection, measurement and control system is established to measure and effectively manage the credit risk in time, and to improve the key utility of the credit risk management system in the process of risk control. First of all, this paper comprehensively analyzes the current situation of credit risk of commercial banks in China, the existing problems in credit risk management and elaborates the important position of measurement in credit risk management. On the basis of comparing the applicability of four modern credit risk measurement models in China, KMV model is chosen as the basic model. Secondly, in order to improve the applicability of the KMV model in China, the parameters are revised: according to the characteristics of the sharp and thick tail of stock return series and leverage effect, the EGARCH (1K1) -M model is used to calculate the volatility of equity value instead of the GARCH (1K1) model; In view of the problem of non-tradable shares in China, the net asset pricing method is used to estimate the stock. In the setting of default point, the difference of default distance between normal company and defaulting enterprise under three different default points is calculated and tested, and the optimal default point is selected. The risk-free rate of return adopts Shanghai Interbank offered rate (Shibor) to better reflect the process of interest rate marketization. Finally, this paper analyzes and tests the credit risk measurement of 14 listed companies in the top 5 industries in 2014. The validity of the modified KMV model in China's credit risk measurement is verified. Finally, this paper puts forward some suggestions on how to improve the level of credit risk management from the aspects of measurement and application environment. The results show that: (1) using EGARCH (1) -M model to calculate the volatility of equity value can reflect the leverage effect between forward return and future volatility, and improve the accuracy of calculation. (2) through independent sample T test, The optimal default point is DPT=0.75LTD STD;. (3) the average default distance of ST is smaller than that of non-ST on the whole, which means that the default risk of ST is smaller than that of ST, which is consistent with the present situation. However, the theoretical default probability is not completely consistent with the present situation, that is, the theoretical default probability can not effectively identify the total credit risk of the company. (4) the level of credit risk of listed companies in different industries varies significantly. The credit risk of listed companies in manufacturing industry is the largest. (5) K-S test and Mann-Whitney U test are carried out on the empirical results. The results show that the modified KMV model can effectively distinguish the risk level between ST and non-ST companies. On this basis, the prediction ability of the modified model is further expressed by ROC curve, and the accuracy of prediction is 85.7%.
【学位授予单位】:南京财经大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:F832.33
【相似文献】
相关期刊论文 前10条
1 姜晓兵;温小霓;;现代投资组合理论中风险测度方法的比较分析[J];价值工程;2006年05期
2 贺思辉;王茂;;小样本下的金融风险测度的技术研究[J];数理统计与管理;2006年03期
3 文平;马雪雅;齐晓波;;一致性风险测度公理的修正[J];统计与决策;2007年06期
4 文平;秦伶俐;;基于凸函数的风险测度[J];数学的实践与认识;2013年04期
5 王文龙;程希骏;;基于谱风险测度的期指保证金水平设定[J];中国科学技术大学学报;2011年12期
6 郑承利;陈燕;;基于等熵一致性风险测度的组合选择[J];系统工程理论与实践;2014年03期
7 谢赤;陈世平;张运生;;高新技术企业R&D投资风险测度系统研究[J];科技管理研究;2006年06期
8 刘富兵;刘海龙;;下边风险测度下养老基金的最优资产配置[J];系统工程学报;2010年05期
9 踪程;陈立文;尹志军;马力;;城市房价风险测度及预警研究综述[J];建筑经济;2012年06期
10 唐吟;苏锡坤;;谱风险测度下的投资组合[J];特区经济;2012年11期
相关会议论文 前3条
1 周倩;彭锦;;变形风险测度与赋变范风险空间[A];第九届中国不确定系统年会、第五届中国智能计算大会、第十三届中国青年信息与管理学者大会论文集[C];2011年
2 曹志鹏;;一致风险测度下的商业银行资产配置效率研究[A];经济发展与管理创新--全国经济管理院校工业技术学研究会第十届学术年会论文集[C];2010年
3 许启发;靳鑫;;金融风险测度的统计监测[A];第四届(2009)中国管理学年会——金融分会场论文集[C];2009年
相关重要报纸文章 前1条
1 宝盈基金管理公司 杜海涛;VaR及其在流动性风险测度与股票质押贷款比率确定中的应用[N];证券时报;2003年
相关博士学位论文 前10条
1 海小辉;欧盟碳排放配额交易市场的价格决定因素及风险测度[D];天津大学;2014年
2 张f平;风险测度一致性的拓展研究[D];上海交通大学;2007年
3 徐照宇;广义非对称金融风险测度及应用研究[D];哈尔滨工业大学;2011年
4 朱云洲;若干风险测度下的最优再保险设计[D];浙江大学;2015年
5 周春阳;风险承受者视角下的下边风险管理[D];上海交通大学;2009年
6 蒋翠侠;动态金融风险测度及管理研究[D];天津大学;2007年
7 刘俊山;基于风险测度理论的证券投资组合优化研究[D];复旦大学;2007年
8 梁凌;基于信用风险测度的商业银行贷款定价研究[D];湖南大学;2009年
9 慕永国;基于条件在险价值风险测度的供应链契约模型研究[D];哈尔滨工业大学;2010年
10 冯谦;信用风险测度和信用衍生产品定价[D];上海交通大学;2006年
相关硕士学位论文 前10条
1 翁在丽;基于P范数的多元及多期风险测度[D];华东师范大学;2010年
2 曹植;我国保险业系统性风险测度研究[D];山东财经大学;2015年
3 沈盟;基于Bootstrap方法的金属期货市场风险测度VaR和ES的区间预测[D];西南交通大学;2015年
4 李娅;我国商业银行结构性理财产品的风险测度与实证检验[D];复旦大学;2014年
5 郑倩玉;中国银行业系统性风险测度及监管启示[D];吉林财经大学;2016年
6 张盈;基于Banach空间的拟凸风险测度与价格泡沫问题的研究[D];南京理工大学;2016年
7 张文静;基于拟凸风险测度下的最优风险配置[D];南京理工大学;2016年
8 王坤宇;基于风险测度理论的CVPP运行方式研究[D];华北电力大学(北京);2016年
9 董晨椌;中小板上市公司信用风险测度研究[D];湖南大学;2016年
10 周雪静;我国商业银行违约风险测度研究[D];山东大学;2016年
,本文编号:2333002
本文链接:https://www.wllwen.com/guanlilunwen/bankxd/2333002.html