基于数据挖掘的商业银行贷款信用评级
[Abstract]:Risk management is the core of the business process of commercial banks and the most important of the healthy development of commercial banks. Deposit and loan business is one of the most important components in the business process of commercial banks. Loan business is the main means of profit of commercial banks. Therefore, the loan risk becomes the most important risk of commercial banks, which needs to be dealt with positively and reasonably. In this paper, the decision tree classification technology in data mining is used to mine the real loan information samples of a commercial bank. After data acquisition, integration, pre-processing, and then the establishment of a decision tree rating model of loan risk, then based on this, the risk rating of the loan can be obtained, which helps the risk management department of commercial banks to predict the risk of the loan. From the information of loan enterprises obtained by commercial banks at present, it can be seen that the relevant data are large and complicated, all the indicators of different enterprises are irrelevant, and there are almost no identical indicators. In view of the limitations of traditional decision tree algorithm in dealing with continuous attributes, this paper focuses on the discretization method of financial data and the decision tree generation method applied to commercial bank loan risk prediction system: for continuous attributes, The clustering method is used to divide the data in its attributes, and then the fuzzy set method is used to solve the problem of harsh threshold unfairness in the discretization of continuous data. According to the new attribute with membership degree, the improved C4.5 decision tree classification method is used, and it is applied to the bank risk prediction. Based on the detailed data of loan enterprises in a commercial bank system as training data, combined with the idea and method of data mining, the improved decision tree classification technology is applied to predict the loan risk of enterprises in commercial banks. The results show that the improved method can not only guarantee the accuracy of prediction rating, but also make the decision tree more concise, and the results can be used for reference.
【学位授予单位】:南京理工大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:TP311.13;F832.4
【参考文献】
相关期刊论文 前10条
1 霍亮;杨柳;张俊芝;;数据挖掘及其发展方向探索[J];产业与科技论坛;2011年20期
2 冯帆;徐俊刚;;C4.5决策树改进算法研究[J];电子技术;2012年06期
3 江峰;杜军威;眭跃飞;曹存根;;基于边界和距离的离群点检测[J];电子学报;2010年03期
4 陈东晓;陈庆奎;;基于密度优化的KNN算法的研究[J];上海理工大学学报;2010年05期
5 赵飞军;贺兴时;王娟;;一种改进的基于密度聚类的支持向量机[J];佳木斯大学学报(自然科学版);2010年04期
6 王栋;向阳;张波;;本体在数据挖掘系统中的应用研究[J];计算机工程与应用;2009年05期
7 周董;刘鹏;;VDBSCAN:变密度聚类算法[J];计算机工程与应用;2009年11期
8 王品;黄焱;;改进的OPTICS算法在调制识别中的应用[J];计算机工程与应用;2011年16期
9 丁春荣;李龙澍;杨宝华;;基于粗糙集的决策树构造算法[J];计算机工程;2010年11期
10 王国胤;姚一豫;于洪;;粗糙集理论与应用研究综述[J];计算机学报;2009年07期
相关博士学位论文 前1条
1 赵静娴;基于决策树的信用风险评估方法研究[D];天津大学;2009年
相关硕士学位论文 前8条
1 冯为军;基于粗糙集理论的数据挖掘算法的研究[D];哈尔滨工程大学;2010年
2 吴学辉;基于粗糙集的决策树算法在高校评教中的应用[D];太原理工大学;2011年
3 颜文娟;基于变精度粗糙集的决策树分类算法研究[D];大连海事大学;2011年
4 王海龙;我国商业银行技术风险评级体系研究[D];华中科技大学;2011年
5 熊祖光;基于核密度估计的空间聚类算法研究以及改进[D];吉林大学;2008年
6 王凤;我国商业银行并购贷款风险评价研究[D];武汉理工大学;2009年
7 李秋颖;决策树优化与关联规则挖掘算法研究[D];大连海事大学;2010年
8 李茵茵;我国商业银行信用风险度量模型研究[D];西南财经大学;2010年
,本文编号:2437714
本文链接:https://www.wllwen.com/guanlilunwen/bankxd/2437714.html