非完备市场中未定权益的定价与对冲
发布时间:2019-03-31 19:17
【摘要】:本文讨论非完备市场中的未定权益定价与对冲问题,利用效用无差异的思想,定义未定权益B在t时刻的价格是使得下面的不等式成立的最小的关于Ft-可测的pt:ess supπE[u(XT(x+Pt,π-B)|Ft]≥ess supπE[u(XT(x,π)|Ft],其中u是投资者的效用函数,XT,x,π表示初始财富是x,投资策略是π的投资组合的财富过程.我们考虑信息流是不连续的情形,同时投资策略限制在一个闭凸集中,对具有负指数效用的投资者,得到了未定权益价格应满足的动态方程,它是一个带跳的倒向随机方程,生成元关于第二个未知变元Z是二次增长的.最后根据倒向随机微分方程的比较定理,得到了未定权益的价格关于各个参数的变化情况.
[Abstract]:In this paper, we discuss the pricing and hedging of contingent claims in incomplete markets, and make use of the idea that there is no difference in utility. Define the price of contingent claim B at time t is the smallest pt:ess sup 蟺 E [u (XT (x Pt, 蟺-B) | Ft] 鈮,
本文编号:2451199
[Abstract]:In this paper, we discuss the pricing and hedging of contingent claims in incomplete markets, and make use of the idea that there is no difference in utility. Define the price of contingent claim B at time t is the smallest pt:ess sup 蟺 E [u (XT (x Pt, 蟺-B) | Ft] 鈮,
本文编号:2451199
本文链接:https://www.wllwen.com/guanlilunwen/bankxd/2451199.html