基于人工神经网络的商业银行信用风险评估模型研究
[Abstract]:With the increasing trend of economic globalization, the pace of promoting interest rate marketization in China is gradually accelerated, the volatility of financial markets is becoming more and more serious, and commercial banks are facing unprecedented credit risk challenges. In the face of increasingly fierce competition in the living environment, whether the credit risk of loan enterprises can be scientifically and effectively managed has a vital impact on the sustainable development of commercial banks. At present, the commercial banking industry of our country is still in the stage of reform, transition and new development, and the management of credit risk is still in the application stage of the traditional subjective analysis method, which is difficult to meet the development needs of commercial banks. In this paper, from the perspective of commercial banks, this paper uses neural network technology to study the credit risk assessment of commercial bank loan enterprise customers, in order to provide an effective credit risk assessment technology and method for commercial banks. Based on the literature research on the credit risk assessment model of commercial bank enterprise customers, this paper defines the connotation of commercial bank credit and credit risk, and uses the basic theory of artificial neural network. This paper scientifically studies the main influencing factors of credit risk assessment of commercial banks, constructs a credit risk assessment index system of commercial banks with 27 indicators at three levels, and studies the credit risk assessment model of commercial banks through comprehensive comparison. The credit risk assessment model of commercial banks is established based on the improved BP neural network. The model is empirically analyzed by using the data of 144 companies and MATLAB2012a statistical software. The results show that the discriminant accuracy of the credit risk assessment model of commercial banks is 87.04%, which is better than that of standard BP neural network model and Logistic regression model. It shows that the model can evaluate the credit risk of commercial bank customers reasonably and effectively. The research results of this paper provide a useful basis for the credit risk assessment of commercial bank customers, and have a good guiding value in practice.
【学位授予单位】:长沙理工大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:F832.33;TP183
【参考文献】
相关期刊论文 前10条
1 梁j,吴德胜,王志强,熊立,王国华;基于ANFIS和Elman网络的信用评价研究[J];管理工程学报;2005年01期
2 吴冲;张晓东;田海霞;刘超宇;;基于模糊神经网络的商业银行信用风险评估模型研究[J];管理观察;2009年07期
3 郭英见;吴冲;于天军;;基于BP神经网络组和DS证据理论的信用风险评估算法[J];合肥工业大学学报(社会科学版);2009年05期
4 张婧婧;;基于BP-KMV模型的商业银行信用风险评价研究[J];河海大学学报(哲学社会科学版);2009年03期
5 吴冲,乔木;商业银行非财务信用风险分析[J];哈尔滨工业大学学报(社会科学版);2005年03期
6 程昆;储昭东;米运生;;商业银行信贷组合信用风险VaR估计技术研究[J];上海经济研究;2009年02期
7 吴超鹏,吴世农;基于价值创造和公司治理的财务状态分析与预测模型研究[J];经济研究;2005年11期
8 朱天星;于立新;田慧勇;;商业银行个人信用风险评价模型研究[J];金融理论与实践;2011年03期
9 肖智;李文娟;;基于主成分分析和支持向量机的个人信用评估[J];技术经济;2010年03期
10 曾筝;;商业银行信用风险评估方法研究[J];计算机仿真;2011年08期
相关博士学位论文 前1条
1 杨华峰;基于循环经济的企业竞争力评价研究[D];南京理工大学;2006年
相关硕士学位论文 前9条
1 谭春晖;基于支持向量机的企业信用风险评估研究[D];江南大学;2010年
2 宋红晶;应用数据包络分析法对我国上市中小企业的信用评分研究[D];华东师范大学;2011年
3 刘铮铮;基于层次分析法的商业银行信用评级模型研究[D];西北工业大学;2006年
4 付群;商业银行信贷风险管理[D];对外经济贸易大学;2006年
5 杨建模;DEA在企业信用评分中的应用研究[D];湖南大学;2009年
6 袁春振;我国商业银行信贷风险预警研究[D];复旦大学;2009年
7 赵清;商业银行信用评级中逻辑回归与判别分析的对比[D];山东大学;2010年
8 桂司文;基于KMV模型的我国上市公司信用风险度量的实证研究[D];中国科学技术大学;2010年
9 邱士勤;基于数据挖掘技术的商业银行信用风险管理研究[D];湖南大学;2010年
本文编号:2487570
本文链接:https://www.wllwen.com/guanlilunwen/bankxd/2487570.html