基于稀疏表示的遥感图像分类方法改进
本文关键词:基于稀疏表示的遥感图像分类方法改进
更多相关文章: 稀疏表示 局部二值模式 遥感图像 局部纹理 字典学习
【摘要】:传统稀疏表示分类算法由于没有给出全面的图像纹理信息,导致分类准确率不高。针对该问题,在稀疏表示分类模型中引入局部二值模式(LBP)特征,提出一种新的稀疏表示分类方法。该方法使用LBP对遥感图像进行特征提取,获得遥感图像的局部纹理特征,根据LBP直方图训练结构化字典,建立基于稀疏表示的遥感图像分类模型。实验结果表明,与支持向量机以及K最近邻方法相比,该方法能够有效提高分类精度。
【作者单位】: 南京理工大学计算机科学与工程学院;
【分类号】:TP751
【正文快照】: 中文引用格式:唐晓晴,刘亚洲,陈骏龙.基于稀疏表示的遥感图像分类方法改进[J].计算机工程,2016,42(3):254-258,265.英文引用格式:Tang Xiaoqing,Liu Yazhou,Chen Junlong.Improvement of Remote Sensing Image Classification MethodBased on Sparse Representation[J].Comput
【相似文献】
中国期刊全文数据库 前10条
1 陈思宝;赵令;罗斌;;局部保持的稀疏表示字典学习[J];华南理工大学学报(自然科学版);2014年01期
2 郑轶;蔡体健;;稀疏表示的人脸识别及其优化算法[J];华东交通大学学报;2012年01期
3 段菲;章毓晋;;一种面向稀疏表示的最大间隔字典学习算法[J];清华大学学报(自然科学版);2012年04期
4 张佳宇;彭力;;基于联合动态稀疏表示方法的多图像人脸识别算法[J];江南大学学报(自然科学版);2014年03期
5 查长军;孙南;张成;韦穗;;基于稀疏表示的特定目标识别[J];吉林大学学报(工学版);2013年01期
6 朱启兵;杨宝;黄敏;;基于核映射稀疏表示分类的轴承故障诊断[J];振动与冲击;2013年11期
7 王国权;张扬;李彦锋;王丽芬;马晓梅;;一种基于稀疏表示的图像去噪算法[J];工业仪表与自动化装置;2013年05期
8 耿耀君;张军英;;一种基于投影稀疏表示的基因选择方法[J];哈尔滨工程大学学报;2011年08期
9 翟懿奎;甘俊英;徐颖;曾军英;;快速稀疏表示指背关节纹识别及其并行实现[J];吉林大学学报(工学版);2012年S1期
10 詹永照;张珊珊;成科扬;;基于非线性可鉴别的稀疏表示视频语义分析方法[J];江苏大学学报(自然科学版);2013年06期
中国重要会议论文全文数据库 前3条
1 何爱香;刘玉春;魏广芬;;基于稀疏表示的煤矸界面识别研究[A];虚拟运营与云计算——第十八届全国青年通信学术年会论文集(上册)[C];2013年
2 樊亚翔;孙浩;周石琳;邹焕新;;基于元样本稀疏表示的多视角目标识别[A];2013年中国智能自动化学术会议论文集(第五分册)[C];2013年
3 葛凤翔;任岁玲;郭鑫;郭良浩;孙波;;微弱信号处理及其研究进展[A];中国声学学会水声学分会2013年全国水声学学术会议论文集[C];2013年
中国硕士学位论文全文数据库 前10条
1 张琨雨;在线字典训练及加权差异性稀疏表示的研究[D];大连理工大学;2011年
2 王勇;基于稀疏表示的人脸识别研究[D];五邑大学;2013年
3 李义真;基于词包与稀疏表示的场景分类[D];华南理工大学;2013年
4 孙丽花;基于稀疏表示的人脸识别方法研究[D];河南科技大学;2013年
5 陈天娇;基于分组稀疏和权重稀疏表示的人脸识别研究[D];安徽大学;2014年
6 刘自成;基于稀疏表示的雷达目标角度与距离估计[D];西安电子科技大学;2014年
7 李立;基于稀疏表示的人脸图像识别方法研究[D];南京理工大学;2012年
8 满江月;基于稀疏表示的代价敏感性人脸识别算法研究[D];南京邮电大学;2012年
9 赵广銮;稀疏表示在图像识别中的应用[D];北京邮电大学;2013年
10 罗燕龙;基于局部稀疏表示模型的在线字典学习跟踪算法研究[D];厦门大学;2014年
,本文编号:1223301
本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/1223301.html