当前位置:主页 > 管理论文 > 工程管理论文 >

基于弹性支撑的转子系统振动控制及管道阻尼减振技术研究

发布时间:2017-12-27 13:28

  本文关键词:基于弹性支撑的转子系统振动控制及管道阻尼减振技术研究 出处:《北京化工大学》2016年硕士论文 论文类型:学位论文


  更多相关文章: 弹性阻尼支撑 转子系统稳定性 整体式挤压油膜阻尼器(ISFD) 阻尼密封强度计算 管道阻尼减振


【摘要】:高转速、高精度、大功率、轻结构和长寿命柔性转子是现代高速旋转机械的发展趋势。为了获得更高的工作效率和可靠性,现在的转子系统大都采用柔性转子设计,柔性转子在高速下运转其同步振动响应往往较大且高速下的转子系统更容易出现次同步振动引发的稳定性问题。当前解决转子振动较大、易失稳问题最简单有效的方法之一就是优化支撑系统,引入弹性阻尼支撑结构以改善转子系统的稳态和瞬态动力学特性。通过引入弹性支撑结构可有效降低转子系统临界转速,这就可以合理的匹配临界转速和工作转速的相对位置,使得系统临界转速能进一步远离工作转速,有效避开共振区。通过引入外阻尼可有效抑制转子系统同步振动响应过大和次同步振动失稳问题,提高转子系统稳定性。本文的研究主线是阻尼减振技术,结合研究生期间的科研实验和项目实践情况,全文主要从弹性阻尼支撑结构、阻尼密封结构和粘滞性阻尼器结构在转子系统或化工设备振动控制中的应用几方面,对阻尼减振技术展开了详细的分析和介绍。具体研究内容如下:(1)弹性阻尼支撑结构中整体式挤压油膜阻尼器(Integral Squeeze Film Damper,简称ISFD)是本文重点分析和介绍的部分。新型的整体式挤压油膜阻尼器(ISFD)由于采用新颖的电火花线切割制造工艺进行整体式加工,不仅在结构上较传统挤压油膜阻尼器有明显不同,而且在抑制不平衡下同步振动水平和改善次同步振动诱发的转子失稳等问题上有着一系列更加突出的优势。本文第二章将从新型的整体式挤压油膜阻尼器(ISFD)出现背景、结构特点、结构类型的发展和演变、提高稳定性机理、能量耗散机理、设计关键环节、实际工程应用情况、主要优点、存在的不足和今后发展方向等九方面对其进行全面的分析和介绍。(2)为了探究新型ISFD弹性阻尼支撑结构对转子振动控制的影响,本文首先从数值模拟分析出发,利用Dyrobes转子动力学软件仿真模拟了刚性支撑和弹性支撑两种不同支撑结构下,质量分布和悬臂长度对转子系统临界转速及振动控制方面的影响规律,为下文相关实验的进行提供了理论指导。本文研究并设计了不同结构参数的S型弹性体,探究了不同结构参数对S型弹性体刚度参数的影响规律,并根据实验台情况设计并加工出了四套实验用的ISFD弹性阻尼支撑结构。本文分别设计并搭建了多种实验工况下的单跨悬臂转子实验台、单跨转子实验台以及双跨N+1支撑转子实验台,并将新设计的ISFD弹性阻尼支撑结构应用于上述三种转子振动控制实验中。通过多种不同支撑结构下减振效果的对比分析,实验证明了ISFD弹性阻尼支撑结构在转子系统振动控制方面相对其他支撑结构有着非常明显的阻尼减振效果。(3)本文针对北京航天某所某型号发动机液氢涡轮泵离心轮前、后凸肩阻尼封结构稳定性研究项目中密封结构强度问题,首先利用Fluent流场软件求解出不同密封结构下的压力分布,然后应用Ansys有限元分析软件对梳齿密封和圆孔型阻尼密封在实际工况下的应力强度和变形量进行求解,对比分析了两种密封结构的强度,并对圆孔型密封在不同周向孔数及不同圆孔深度下的结构强度进行了对比分析和研究。(4) 本文介绍了管道阻尼减振技术以及粘滞性管道阻尼器的结构及其减振原理。以四项实际工程项目中的换热器管道、压缩机管道和低温甲醇洗工艺管道为实例,本文从管道参数及振动情况、管道模态分析、管道振动原因分析、阻尼减振模拟计算、阻尼减振方案的确定以及减振改造效果验收六方面对管道阻尼减振技术在石油化工设备中的应用做了详细的分析和介绍。实践证明,阻尼减振技术能有效控制石油化工设备中的振动问题,四项实际工程管道阻尼减振改造项目的减振效果均得到用户的一致好评。
[Abstract]:High speed, high precision, high power, light structure and long life flexible rotor are the development trend of modern high speed rotating machinery. In order to achieve higher work efficiency and reliability, most of the rotor systems nowadays use flexible rotor design. When the flexible rotor is running at high speed, the synchronous vibration response is often large, and the rotor system with high speed is prone to the stability problem caused by subsynchronous vibration. At present, one of the most simple and effective methods to solve the problem of large rotor vibration and instability is to optimize the supporting system, and introduce the elastic damping support structure to improve the steady and transient dynamic characteristics of the rotor system. By introducing elastic support structure, the critical speed of rotor system can be effectively reduced, which can reasonably match the relative position of critical speed and working speed, so that the critical speed of the system can further move away from the working speed and avoid resonance area effectively. Through the introduction of external damping can effectively suppress the synchronous vibration response of rotor system is too large and time synchronous vibration instability problems, improve the stability of rotor system. The main line of this paper is the damping technology, combined with the postgraduate research and project practice, this article mainly from several aspects of application of elastic damping support structure, damping seal structure and viscous damper structure in rotor system or chemical equipment in vibration control, launched a detailed introduction and analysis of vibration damping technology. The specific contents are as follows: (1) elastic damping support the integrated structure of squeeze film damper (Integral Squeeze Film Damper, referred to as ISFD) is the key part of the introduction and analysis. The squeeze film damper model (ISFD) because of the use of electric spark wire cutting manufacturing process of novel integral processing, not only in structure than the conventional squeeze film damper are obviously different, and in the inhibition under unbalanced synchronous vibration and improve the level of the rotor subsynchronous vibration induced instability and so on a series of a more prominent advantage. The second chapter from the integral model of squeeze film damper (ISFD) background, structure, development and evolution and structure, improve the stability mechanism and energy dissipation mechanism, key links, engineering application, main advantages, existing problems and future development direction of the nine aspects of comprehensive analysis and introduction the. (2) in order to explore the new ISFD elastic damping support structure of rotor vibration control, this paper from the numerical simulation and analysis of the use of Dyrobes software to simulate the rotor dynamics of rigid support and elastic support two different supporting structure under the influence of the critical speed of rotor system and vibration control of the mass distribution and the cantilever length. To provide theoretical guidance for the following experiments. In this paper, S elastomers with different structural parameters have been studied and designed. The influence rules of different structural parameters on the stiffness parameters of S elastomers have been explored. Based on the experimental platform, four sets of ISFD elastic damping support structures have been designed and manufactured. This paper designs and builds single span cantilever rotor test rig, single span rotor test rig and double span N+1 support rotor test rig under various experimental conditions, and applies the newly designed ISFD elastic damping support structure to the above three kinds of rotor vibration control experiments. By comparing and analyzing the effect of vibration reduction under various supporting structures, it is proved by experiments that ISFD elastic damping support structure has obvious damping effect on vibration control of rotor system compared with other supporting structures. (3) according to a certain type of Beijing aerospace engine liquid hydrogen turbopump centrifugal wheel before and after the shoulder damping sealing structure stability research project seal structure strength problem, we use Fluent software to solve the flow field of different sealing structure under the pressure distribution, and then to the labyrinth seal and hole type damper seal in actual conditions and application of Ansys finite element analysis software, the stress intensity and deformation are solved, compared the two kinds of sealing structure and sealing hole of strength, structural strength to the number of holes in different weeks and different depth of hole of the comparative analysis and research. (4) this paper introduces the pipeline vibration damping techniques and viscous damper and its damping pipe structure principle. In four practical projects in the heat exchanger pipe, pipeline and compressor Rectisol Process Pipeline as an example, the modal parameters and vibration from the pipeline, pipeline analysis, cause analysis, pipeline vibration damping simulation, vibration damping scheme and vibrationreduction effect acceptance six aspects of application technology of pipeline vibration damping in the petrochemical equipment to do the detailed introduction and analysis. Practice has proved that damping vibration reduction technology can effectively control the vibration problems in petrochemical equipment, and the damping effect of four practical engineering pipes and dampers and vibration reduction retrofit projects has been well received by users.
【学位授予单位】:北京化工大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TB535

【参考文献】

相关期刊论文 前10条

1 李志刚;李军;丰镇平;;进口防旋板对孔型密封非定常气流激振特性的影响[J];西安交通大学学报;2016年01期

2 晏鑫;李军;丰镇平;;孔型阻尼密封非定常气流激振特性的研究[J];工程热物理学报;2014年04期

3 胡朋;何立东;张震坤;吕成龙;;基于阻尼减振技术的热电厂减温减压器管道研究[J];机电工程;2014年01期

4 陈果;何立东;韩万富;刘明;;甲醇输送管道的振动分析及阻尼减振技术[J];噪声与振动控制;2013年03期

5 陈景超;薛晓宁;;弹性支承的悬臂转子临界转速计算分析[J];机械研究与应用;2013年02期

6 田野;孙岩桦;丁成伟;杨利花;虞烈;;不同支撑和转子装配方式的高速电机临界转速分析[J];振动与冲击;2013年08期

7 李志刚;李军;丰镇平;;高转速袋型阻尼密封泄漏的特性[J];航空动力学报;2012年12期

8 刘勇;文立华;;弹性环式柔性支撑有限元分析及结构参数选择[J];机械科学与技术;2012年11期

9 田野;孙岩桦;杨利花;虞烈;;带弹性支撑和挤压油膜阻尼器的高速电机支撑系统实验研究[J];中国电机工程学报;2012年27期

10 韩万富;何立东;姜杨;陈果;;阻尼减振技术在离心压缩机出口管道减振中的应用研究[J];石油化工设备技术;2012年04期



本文编号:1341901

资料下载
论文发表

本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/1341901.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户a102f***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com