当前位置:主页 > 管理论文 > 工程管理论文 >

基于回溯优化的非线性高光谱图像解混

发布时间:2018-03-06 17:40

  本文选题:高光谱图像 切入点:非线性解混 出处:《红外与激光工程》2017年06期  论文类型:期刊论文


【摘要】:为了进一步提升高光谱图像的解混精度,提出一种基于回溯优化的高光谱图像后非线性解混算法。在后非线性混合模型的基础上,以观测图像与重构图像之间的重构误差为目标函数,使用回溯搜索算法在解空间搜索使目标函数取得极小值的最优解。在搜索过程中,利用回溯搜索算法的边界控制机制有效保证了高光谱图像解混过程中的约束条件,进而有效实现了对解混丰度值和非线性参数的精确估计。针对合成高光谱图像和真实高光谱遥感图像的解混实验表明,文中算法具有优异的解混性能,所达到的解混精度显著优于现有非线性高光谱图像解混算法。
[Abstract]:In order to further improve the precision of hyperspectral image de-mixing, a post-nonlinear de-mixing algorithm based on backtracking optimization is proposed. Taking the reconstruction error between the observed image and the reconstructed image as the objective function, the backtracking search algorithm is used to search the solution space to obtain the optimal solution of the objective function. The boundary control mechanism of backtracking search algorithm is used to effectively guarantee the constraint conditions in the process of hyperspectral image unmixing. Furthermore, the accurate estimation of unmixing abundance and nonlinear parameters is realized effectively. Experiments on synthetic hyperspectral images and real hyperspectral remote sensing images show that the proposed algorithm has excellent unmixing performance. The unmixing accuracy achieved is significantly better than that of the existing nonlinear hyperspectral image unmixing algorithms.
【作者单位】: 天津商业大学信息工程学院;天津大学精密仪器与光电子工程学院;天津工业大学电子信息工程学院;
【基金】:国家自然科学基金(61401307) 中国博士后科学基金(2014M561184) 天津市应用基础与前沿技术研究计划项目(15JCYBJC17100)
【分类号】:TP751

【参考文献】

相关期刊论文 前1条

1 毛海岑;刘爱东;王亮;;采用混合粒子群算法的星图识别方法[J];红外与激光工程;2014年11期

【共引文献】

相关期刊论文 前4条

1 陈雷;甘士忠;孙茜;;基于回溯优化的非线性高光谱图像解混[J];红外与激光工程;2017年06期

2 高扬;赵金宇;陈涛;王敏;;添加补偿码的快速径向伴星特征星图识别[J];光学精密工程;2017年06期

3 杨会玲;王军;柳红岩;何昕;张新;;基于DSP的漂移扫描CCD星图快速识别[J];光电子·激光;2015年12期

4 孙剑明;;剖分特征集星识别法在天文导航中的应用[J];红外与激光工程;2015年11期

【二级参考文献】

相关期刊论文 前3条

1 高海兵;周驰;高亮;;广义粒子群优化模型[J];计算机学报;2005年12期

2 高尚,韩斌,吴小俊,杨静宇;求解旅行商问题的混合粒子群优化算法[J];控制与决策;2004年11期

3 刘朝山,黄欣,刘光斌;凸多边形星图识别算法[J];光电工程;2004年09期

【相似文献】

相关期刊论文 前10条

1 谌德荣;宫久路;陈乾;曹旭平;;基于样本分割的快速高光谱图像异常检测支持向量数据描述方法[J];兵工学报;2008年09期

2 蒲晓丰;雷武虎;张林虎;蒋奇材;;基于Fukunaga-Koontz变换的高光谱图像异常检测[J];红外技术;2010年04期

3 成宝芝;郭宗光;;高光谱图像波段间相关特性研究[J];大庆师范学院学报;2013年06期

4 杨龙;易宏杰;李因彦;;遥感高光谱图像赤潮识别[J];传感器世界;2007年05期

5 汪倩;陶鹏;;结合空间信息的高光谱图像快速分类方法[J];微计算机信息;2010年21期

6 王立国;孙杰;肖倩;;结合空-谱信息的高光谱图像分类方法[J];黑龙江大学自然科学学报;2010年06期

7 冯朝丽;朱启兵;朱晓;黄敏;;基于光谱特征的玉米品种高光谱图像识别[J];江南大学学报(自然科学版);2012年02期

8 付欢;龙海南;韩晓霞;;基于冗余字典的高光谱图像的稀疏分解[J];河北软件职业技术学院学报;2013年04期

9 耿修瑞,张霞,陈正超,张兵,郑兰芬,童庆禧;一种基于空间连续性的高光谱图像分类方法[J];红外与毫米波学报;2004年04期

10 张绮玮;机载高光谱遥感图像处理软件系统[J];红外;2005年02期

相关会议论文 前10条

1 张兵;王向伟;郑兰芬;童庆禧;;高光谱图像地物分类与识别研究[A];成像光谱技术与应用研讨会论文集[C];2004年

2 高连如;张兵;孙旭;李山山;张文娟;;高光谱数据降维与分类技术研究[A];第八届成像光谱技术与应用研讨会暨交叉学科论坛文集[C];2010年

3 王成;何伟基;陈钱;;基于波段重组和小波变换的高光谱图像嵌入式压缩方法[A];黑龙江、江苏、山东、河南、江西 五省光学(激光)联合学术‘13年会论文(摘要)集[C];2013年

4 孙蕾;罗建书;;基于分类预测的高光谱遥感图像无损压缩[A];第一届建立和谐人机环境联合学术会议(HHME2005)论文集[C];2005年

5 杨勇;刘木华;邹小莲;苗蓬勃;赵珍珍;;基于高光谱图像技术的猕猴桃硬度品质检测[A];走中国特色农业机械化道路——中国农业机械学会2008年学术年会论文集(下册)[C];2008年

6 张晓红;张立福;王晋年;童庆禧;;HJ-1A卫星高光谱遥感图像质量综合评价[A];第八届成像光谱技术与应用研讨会暨交叉学科论坛文集[C];2010年

7 高东生;高连知;;基于独立分量分析的高光谱图像目标盲探测方法研究[A];国家安全地球物理丛书(八)——遥感地球物理与国家安全[C];2012年

8 冯维一;陈钱;何伟基;;基于小波稀疏的高光谱目标探测算法[A];黑龙江、江苏、山东、河南、江西 五省光学(激光)联合学术‘13年会论文(摘要)集[C];2013年

9 彭妮娜;易维宁;方勇华;;基于核函数的高光谱图像信息提取研究[A];光子科技创新与产业化——长三角光子科技创新论坛暨2006年安徽博士科技论坛论文集[C];2006年

10 蒲晓丰;雷武虎;黄涛;王迪;;基于稳健背景子空间的高光谱图像异常检测[A];中国光学学会2010年光学大会论文集[C];2010年

相关博士学位论文 前10条

1 普晗晔;高光谱遥感图像的解混理论和方法研究[D];复旦大学;2014年

2 王亮亮;非线性流形结构在高光谱图像异常检测中的应用研究[D];国防科学技术大学;2014年

3 贺智;改进的经验模态分解算法及其在高光谱图像分类中的应用[D];哈尔滨工业大学;2014年

4 魏然;基于成像机理分析的高光谱图像信息恢复研究[D];哈尔滨工业大学;2015年

5 叶珍;高光谱图像特征提取与分类算法研究[D];西北工业大学;2015年

6 冯婕;基于软计算和互信息理论的遥感图像地物分类[D];西安电子科技大学;2014年

7 孙涛;快速多核学习分类研究及应用[D];西安电子科技大学;2015年

8 李昌国;基于谱间和校正相关性的高光谱图像压缩方法研究及GPU并行实现[D];成都理工大学;2015年

9 高放;高光谱图像无损预测压缩技术研究[D];吉林大学;2016年

10 曲海成;面向光谱解混的高光谱图像快速处理技术研究[D];哈尔滨工业大学;2016年

相关硕士学位论文 前10条

1 丰烁;高光谱图像波段选取问题的改进算法研究[D];昆明理工大学;2015年

2 赵伟彦;果蔬干燥过程中的品质无损检测技术研究[D];江南大学;2015年

3 马亚楠;果蔬中内部害虫的高光谱图像检测技术研究[D];江南大学;2015年

4 刘大洋;基于近红外光谱和高光谱图像技术无损识别猕猴桃膨大果[D];西北农林科技大学;2015年

5 王坤;高光谱图像异常目标检测及光谱成像在伪装评估方面的应用研究[D];南京理工大学;2015年

6 王启聪;高光谱图像分类的GPU并行优化研究[D];南京理工大学;2015年

7 程凯;无先验信息的高光谱图像小目标检测算法研究[D];苏州大学;2015年

8 李秩期;基于高光谱及多信息融合的马铃薯外部缺陷无损检测研究[D];宁夏大学;2015年

9 王健;基于高光谱图像的马铃薯形状及重量分类识别建模研究[D];宁夏大学;2015年

10 吴蓓芬;偏振高光谱图像场景仿真及分类方法研究[D];哈尔滨工业大学;2015年



本文编号:1575826

资料下载
论文发表

本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/1575826.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户6f99c***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com