GMA高频振动特性的研究与分析
本文选题:超磁致伸缩致动器 切入点:高频振动 出处:《武汉理工大学》2014年硕士论文 论文类型:学位论文
【摘要】:超磁致伸缩材料是一种新型的功能材料,在高频驱动磁场作用下,其共振输出高达4000ppm的应变值,远高于普通频域驱动时的1500ppm。超磁致伸缩材料的非线性特征使得在探究GMA高频振动特性、量化GMA高频振动时输入与输出上存在着较大的困难,严重制约着高频振动条件下GMA实际工程应用的深度和广度。本文以一款自主开发设计、面向高频振动输出的GMA为研究对象,围绕器件高频振动特性主要完成了以下研究工作: (1)研究分析了应用于高频驱动GMA的主要特点及设计过程中主要考虑因素,在完成器件的动静态磁场仿真设计、磁场均匀性分析、预压机构及温控系统的基础上,绘制了器件的二维图纸,并按设计方案制作了1:1的实物样机。以GMA实物为中心,配套搭建了用于器件输出特性测量的实验平台。 (2)对动态磁滞建模中的关键技术进行了研究,在经典J-A模型基础上,引入时变负载及预压弹簧动态微应力影响,建立了改进的J-A磁滞模型;在线性压磁方程基础上,考虑材料应力项与材料内部磁场强耦作用,建立了用于描述超磁致伸缩材料磁场-机械场的强耦合模型;结合致动器结构动力学模型,联立建立了用于描述超磁致伸缩致动器磁-机耦合磁滞非线性动力学数学模型建模,丰富了超磁致伸缩材料及其器件的建模方法。 (3)在有限元软件ANSYS平台上,以电磁比拟理论为基础,完成了对GMA磁场-机械场耦合建模,在耦合模型的基础上,探究了不同GMM棒体切片层数对材料振动模态的影响,考量了瞬态分析中脉冲宽度与质量块分别对GMA瞬态响应特性的影响,考量谐波分析中驱动频率对GMA输出特性的影响,根据仿真结果为器件工作状态优选及优化设计提供理论依据。 (4)完成了准静态与动态驱动下GMA输出特性实验研究。在准静态实验中,主要研究了关于预应力及驱动磁场强度对GMA输出特性的影响,为器件的动态测试状态优选打下了良好的实验基础;在动态输出实验中,,主要探究了驱动电压、驱动电流与驱动频率对GMA动态输出特性的影响,并就实验结果给出了合理的解释。
[Abstract]:Giant magnetostrictive material is a new type of functional material whose resonance output is as high as 4000 ppm under the action of high frequency magnetic field. The nonlinear characteristics of giant magnetostrictive materials make it difficult to study the high frequency vibration characteristics of GMA and quantify the high frequency vibration of GMA. The depth and breadth of the practical engineering application of GMA under the condition of high frequency vibration are seriously restricted. In this paper, a GMA which is independently developed and designed for the output of high frequency vibration is taken as the research object, and the following research work is mainly done around the high frequency vibration characteristics of the device:. In this paper, the main characteristics of high frequency driving GMA and the main factors considered in the design process are analyzed. On the basis of completing the static and static magnetic field simulation design, the magnetic field uniformity analysis, the preloading mechanism and the temperature control system, The two-dimensional drawing of the device is drawn, and the prototype of 1: 1 is made according to the design scheme. The experimental platform for measuring the output characteristics of the device is set up with GMA as the center. Based on the classical J-A model, the improved J-A hysteresis model is established by introducing the influence of time-varying load and dynamic micro-stress of preloaded spring, and on the basis of the linear piezomagnetic equation, the improved J-A hysteresis model is established. Considering the strong coupling between the material stress term and the magnetic field inside the material, a strong coupling model is established to describe the magnetic field and mechanical field of the giant magnetostrictive material, and the dynamic model of the actuator structure is combined. The mathematical model of magnetostrictive actuator coupled with magneto-mechanical hysteresis is established simultaneously, which enriches the modeling method of giant magnetostrictive material and its devices. On the platform of finite element software ANSYS, based on the theory of electromagnetic analogy, the coupling modeling of GMA magnetic field and mechanical field is completed. On the basis of the coupling model, the influence of the number of slice layers on the vibration modes of materials is investigated. The effects of pulse width and mass block on the transient response of GMA in transient analysis and the effect of driving frequency on the output characteristics of GMA in harmonic analysis are considered. The simulation results provide a theoretical basis for the optimal selection and design of the device working state. In the quasi static experiment, the influence of prestress and driving magnetic field intensity on the output characteristics of GMA is studied. In the dynamic output experiment, the effects of driving voltage, driving current and driving frequency on the dynamic output characteristics of GMA are mainly discussed. A reasonable explanation is given for the experimental results.
【学位授予单位】:武汉理工大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TB381;TB53
【参考文献】
相关期刊论文 前10条
1 袁惠群,李鹤,周硕,闻邦椿;超磁致伸缩换能器的非线性特性[J];东北大学学报;2002年04期
2 贾振元;王晓煜;王福吉;;超磁致伸缩执行器动力学模型及数值模拟[J];大连理工大学学报;2008年03期
3 李成英,陈茹仪;具有非对称分段线性刚度的超磁致伸缩微位移致动器的非线性分析[J];机械科学与技术;2003年04期
4 田春,汪鸿振;超磁致伸缩执行器的自由能磁滞模型的数值实现[J];机械科学与技术;2005年06期
5 党选举,谭永红;在Preisach模型框架下的似对角动态神经网络压电陶瓷迟滞模型的研究[J];机械工程学报;2005年04期
6 蔡旭红,李邵辉;有限长通电螺线管内部空间磁场的模拟[J];汕头大学学报(自然科学版);2004年02期
7 ;DYNAMIC FREE ENERGY HYSTERESIS MODEL IN MAGNETOSTRICTIVE ACTUATORS[J];Chinese Journal of Mechanical Engineering;2006年01期
8 孙华刚;袁惠群;贺威;李东;;超磁致伸缩换能器系统动力学特性分析[J];应用力学学报;2007年03期
9 曹淑瑛,王博文,闫荣格,黄文美,翁玲;超磁致伸缩致动器的磁滞非线性动态模型[J];中国电机工程学报;2003年11期
10 黄文美,王博文,曹淑瑛,孙英,翁玲;计及涡流效应和应力变化的超磁致伸缩换能器的动态模型[J];中国电机工程学报;2005年16期
相关博士学位论文 前1条
1 郑加驹;超磁致伸缩换能器滞回非线性模型的研究[D];天津大学;2009年
本文编号:1587984
本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/1587984.html