2001-2015年喜马拉雅南麓地区植被变化遥感监测
发布时间:2018-03-12 09:19
本文选题:喜马拉雅南麓 切入点:植被变化 出处:《干旱区地理》2017年02期 论文类型:期刊论文
【摘要】:本文应用喜马拉雅南麓地区MODIS NDVI植被遥感数据和格点数据,采用趋势线分析、多元回归等方法分析了该研究区2001-2015年植被NDVI_(max)时空变化特征,同时利用Person相关分析探讨了植被NDVI_(max)时空变化特征与气候因子的响应关系。结果表明:(1)2001-2015年,喜马拉雅南麓地区年内平均NDVI_(max)1~3月份呈下降趋势,4~6月份开始缓慢生长,6~9月份进入植被生长高峰期,10月份开始逐渐降低;植被NDVI_(max)平均值为0.59,植被覆盖度较高;空间上植被覆盖度总体呈东南高西北低,由东南向西北递减;平均NDVI_(max)随海拔变化表现出明显规律性,80%的植被主要分布在较低海拔区(4 050 m)。(2)15 a间,喜马拉雅南麓地区植被NDVI_(max)变化具有阶段性特征,年均NDVI_(max)呈三个变化阶段:2001-2006年和2010-2015年分别以0.003 9·a~(-1)、0.005 3·a~(-1)的速率增长,而2006-2010年以-0.007 0·a~(-1)的速率减少。植被生长季NDVI_(max)呈4个阶段:2001-2004和2007-2010年分别以-0.001 8·a~(-1)、-0.010 6·a~(-1)的速率逐年减少,但2005、2006两年(0.014 8·a~(-1))快速增长至最大值,2010-2015年(0.006 3 a~(-1))波动增长。空间上大部分地区表现出不显著退化,但少部分地区表现出不显著改善(0.05p0.01),而西段低海拔区表现出极显著改善。(3)喜马拉雅南麓地区植被的变化主要由温度和降水量共同影响,此外,高海拔区气温上升引起的冰川融水对植被生长起到一定的作用,中部低海拔区可能还受到人类活动的影响。
[Abstract]:In this paper, using MODIS NDVI vegetation remote sensing data and grid data in the southern Himalayan region, using trend line analysis and multivariate regression analysis, the spatiotemporal variation characteristics of vegetation NDVIV max. from 2001 to 2015 in the study area are analyzed. At the same time, Person correlation analysis was used to study the relationship between the spatial and temporal variation of vegetation NDV _ I _ max) and the response of climatic factors. In the southern Himalayan region, the average annual NDVI_(max)1~3 showed a decreasing trend. The slow growth began in June and the peak of vegetation growth began to decrease in September, and the average value of NDVI_(max)1~3 in October was 0.59, and the vegetation coverage was relatively high. The vegetation coverage in space is generally high in the southeast and low in the northwest, and decreases from southeast to northwest, and the average NDVImax) shows obvious regularity with elevation. 80% of the vegetation is mainly distributed in the lower altitude area within 15 years. The vegetation NDVImax) changes in the southern Himalayan region are characterized by stages, and the annual annual NDVImax) increases at the rate of 0.003 9 路a ~ (1) / a ~ (3) ~ (3) ~ (3) / a ~ (3) / a ~ (-1) from 2001 to 2006 and from 2010 to 2015 (respectively) at the rate of 0.0039 路a ~ (-1) 路a ~ (-1) 路a ~ (-1)). From 2006 to 2010, the rate of NDVImax decreased from -0.007 0 路a ~ (-1) to -0.007 0 路a ~ (-1). NDVImax) showed four stages: 2001-2004 and 2007-2010, respectively, at the rate of -0.001 8 路a ~ (-1) -0.010 6 路a ~ (-1)). But in 2005 / 2006, 0.014.8 路a / a ~ (-1)) increased rapidly to its maximum value (2010-2015) and increased in fluctuation (0.0063 / a ~ (-1)). Most areas showed no significant degradation in space. However, in a few areas there was no significant improvement of 0.05p0.01g, while in the low altitude area of the western part, the vegetation change in the southern Himalayan region was mainly influenced by temperature and precipitation. The glacial melt water caused by the rise of temperature in the high altitude area plays a certain role in vegetation growth, and the low altitude area in the central part may also be affected by human activities.
【作者单位】: 兰州交通大学测绘与地理信息学院/甘肃省地理国情监测工程实验室;
【基金】:国家自然科学基金(41671447、71563025、41371435)资助
【分类号】:Q948.1;TP79
【相似文献】
相关期刊论文 前10条
1 王晗生,王青宁;植被建造技术取向[J];西北植物学报;2004年09期
2 王惠;齐实;李林英;刘劲;;森林河溪植被带建设[J];林业调查规划;2007年05期
3 贾庆宇;王笑影;吕国红;谢艳兵;;气候变化对植被带影响研究进展[J];安徽农业科学;2010年21期
4 刘f R,
本文编号:1600945
本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/1600945.html