基于模拟退火遗传算法的车间动态调度研究
本文选题:动态调度 切入点:模拟退火算法 出处:《山东大学》2017年硕士论文 论文类型:学位论文
【摘要】:随着全球经济迅速发展,制造业竞争异常激烈,生产方式逐渐转向高柔性、小批量,为此必须提高快速响应市场的能力,在保证质量的同时尽可能的缩短产品周期、减少库存,从而提升自身的核心竞争力。生产的环境是复杂多变的,车间在制造加工过程中存在着订单取消、机器损坏、交货期变更等不确定的扰动因素,因此车间制造中如何制定合理的调度方案显得尤为重要,人们迫切需要对实际生产中的车间调度问题做深入和广泛的研究来更好地指导生产,车间动态调度问题越来越受到重视。许多研究显示单一的算法难以解决复杂的调度问题,算法之间的结合有更强的搜索能力。论文在研究了各种算法的基础上,引入局部搜索能力较强的模拟退火算法与遗传算法相结合,防止算法陷入局部最优。两种算法优势互补,使得在解空间搜索的集中性和广泛性得以平衡,弥补了各自单一算法的缺点。在算法的操作和参数上做了一定的改进,使算法更加有效,并通过对典型车间调度问题仿真实验以及将优化结果与其他算法所得结果进行比较,验证模拟退火遗传算法的有效性。考虑到实际生产复杂多变的环境、加工过程中经常出现的不确定性扰动事件,针对制造企业在生产复杂零部件过程中可能出现的几个主要的扰动事件,研究了动态环境下的车间调度问题,改进了调度模型,设计了更符合实际要求的目标函数。采用了事件驱动的再调度机制,结合滚动窗口技术将上一章提出的模拟退火遗传算法在线优化各个滚动区间内进行优化调度。利用上述方法对交货期提前、紧急插单、机器故障、工件随机到达、部件残品这几个扰动事件产生时的具体的解决方案和流程做了详细的阐述,并通过对实际案例进行仿真,得出的调度方案满足实际加工生产的要求,证明了所提出方法的可行性和有效性。为了更直观的验证上述研究成果的可行性,用Flexsim软件对所得出的调度方案进行模拟仿真,利用实际案例详细介绍了仿真过程以及注意事项。对仿真结果进行了有效的分析,对存在问题的地方提出了相应的改进方案,使结果更加符合实际车间调度要求。而且在前几章对车间动态调度问题研究的基础上,利用Vb.net、Matlab、SQL Server构建了便于管理调度的车间调度系统,对系统的总体结构设计、各功能模块的作用及实现流程进行了界面展示和相应介绍,为实际生产加工中调度问题的解决提供了方便的平台。最后,总结了全文所做的工作,对车间调度的发展方向做了展望。
[Abstract]:With the rapid development of the global economy and the fierce competition in the manufacturing industry, the mode of production has gradually shifted to high flexibility and small quantities. Therefore, the ability to respond to the market quickly must be improved, and the product cycle should be kept as short as possible while the quality is guaranteed, and the inventory is reduced. The production environment is complex and changeable. During the process of manufacturing, there are uncertain disturbance factors, such as order cancellation, machine damage, change of delivery date, etc. Therefore, it is very important to make a reasonable scheduling scheme in the workshop manufacturing. People urgently need to do in-depth and extensive research on the job shop scheduling problem in actual production to better guide the production. More and more attention has been paid to the job-shop dynamic scheduling problem. Many researches show that the single algorithm is difficult to solve the complex scheduling problem, and the combination of the algorithms has stronger searching ability. The combination of simulated annealing algorithm (SA) with genetic algorithm (GA), which has strong local search ability, is introduced to prevent the algorithm from falling into local optimum. The advantages of the two algorithms complement each other and balance the centrality and extensiveness of search in solution space. Some improvements have been made in the operation and parameters of the algorithm to make the algorithm more effective. The simulation experiments of typical job-shop scheduling problems and the comparison of the optimization results with the results of other algorithms are carried out. Verify the effectiveness of the simulated annealing genetic algorithm. Considering the complex and changeable environment of actual production, the uncertain disturbance events often occur in the processing process. Aiming at some main disturbance events that may occur in the process of manufacturing complex parts, the scheduling problem in dynamic environment is studied, and the scheduling model is improved. A more practical objective function is designed, and an event-driven rescheduling mechanism is adopted. Combined with the rolling window technique, the simulated annealing genetic algorithm proposed in the previous chapter is used to optimize the optimal scheduling of each rolling interval online. The specific solution and flow of these disturbance events are described in detail, and through the simulation of actual cases, the scheduling scheme is obtained to meet the requirements of actual processing and production. The feasibility and effectiveness of the proposed method are proved. In order to verify the feasibility of the above research results more intuitively, the proposed scheduling scheme is simulated by Flexsim software. The simulation process and points for attention are introduced in detail with practical cases. The simulation results are analyzed effectively, and the corresponding improvement schemes are put forward for the existing problems. On the basis of the research on the dynamic scheduling problem of the job shop in the previous chapters, a job shop scheduling system which is convenient for management and scheduling is constructed by using VB. Net Matlab / SQL Server. The overall structure of the system is designed. The function and realization flow of each function module are displayed and introduced accordingly, which provides a convenient platform for solving the scheduling problem in actual production and processing. Finally, the work done in this paper is summarized. The development trend of job shop scheduling is prospected.
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP18;TB497
【相似文献】
相关期刊论文 前10条
1 陶春华,马光文,涂扬举,徐刚,左幸;实码退火遗传算法在厂内经济运行中的应用[J];四川大学学报(工程科学版);2005年06期
2 周平;;集装箱装箱优化研究[J];港口科技;2007年10期
3 汪鹏君;陆金刚;曾晓洋;;基于整体退火遗传算法的低功耗最佳极性搜索[J];计算机辅助设计与图形学学报;2008年01期
4 谢经明;徐小凤;陈冰;陈幼平;艾武;;基于模拟退火遗传算法的电动汽车网络优化调度[J];中国机械工程;2007年14期
5 苗玉彬,刘成良,赵爽,滕弘飞;一种基于人机交互的退火遗传算法[J];上海交通大学学报;2003年11期
6 谢云峰;黄美发;钟艳如;匡兵;;基于模拟退火遗传算法的拆卸路径规划[J];机械工程师;2007年01期
7 汤晖;李润;许伦辉;黄艳国;;基于贪心退火遗传算法的车辆图像分割研究[J];交通与计算机;2007年04期
8 邹玲,石冰心;网络划分优化的退火遗传算法[J];华中理工大学学报;1999年03期
9 刘占军;;基于模拟退火遗传算法汽车覆盖件弹复量优化诊断研究[J];塑性工程学报;2007年02期
10 艾宝利;武昌;;装备维修资源优化中的模拟退火遗传算法[J];火力与指挥控制;2010年01期
相关会议论文 前3条
1 胡家君;郭静波;陆文娟;;一种应用于配电网电力线通信资源分配的模拟退火遗传算法[A];2007年中国智能自动化会议论文集[C];2007年
2 张煜东;吴乐南;;一种改进的分布式模拟退火遗传算法用于图像插值[A];第三届和谐人机环境联合学术会议(HHME2007)论文集[C];2007年
3 刘从新;吉培荣;曾维鲁;;整体退火遗传算法用于FIR滤波器的频率采样设计[A];中国仪器仪表学会第五届青年学术会议论文集[C];2003年
相关博士学位论文 前1条
1 苗玉彬;逆摄动法和人机交互退火遗传算法及其应用[D];大连理工大学;2001年
相关硕士学位论文 前10条
1 张姗姗;SAGA的研究及其在灰色预测与多目标库存优化中的应用[D];华南理工大学;2015年
2 张胜良;基于接触联接干涉关系的拆卸序列优化[D];浙江工业大学;2016年
3 刘q,
本文编号:1611761
本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/1611761.html