当前位置:主页 > 管理论文 > 工程管理论文 >

联合空谱信息的高光谱影像半监督ELM分类

发布时间:2018-03-20 22:25

  本文选题:高光谱影像 切入点:极限学习机 出处:《华中科技大学学报(自然科学版)》2017年07期  论文类型:期刊论文


【摘要】:针对高光谱影像处理应用中,标记样本往往数量较小且质量不均而未标记样本大量存在的问题,结合半监督学习方法,提出一种面向高光谱影像分类的半监督极限学习机分类算法.首先根据图理论,联合高光谱影像空间光谱信息,对标记和未标记样本共同构建无向加权图;然后,考虑平滑性约束和结构最小化原则,构造分类目标函数;最后,利用核方法求解最优参数,进而实现高光谱影像的半监督分类.采用该方法进行分类对比实验,结果表明:该方法能够有效利用未标记样本信息,提高小样本下的高光谱影像分类精度.
[Abstract]:In the application of hyperspectral image processing, the number of labeled samples is small and the quality is uneven, but a large number of unlabeled samples exist, which is combined with semi-supervised learning method. A semi-supervised learning machine classification algorithm for hyperspectral image classification is proposed. Firstly, according to graph theory, combining spatial spectral information of hyperspectral image, undirected weighted image is constructed for labeled and unlabeled samples. Considering the smoothness constraint and structure minimization principle, the classification objective function is constructed. Finally, the kernel method is used to solve the optimal parameters, and then the semi-supervised classification of hyperspectral images is realized. The results show that this method can effectively utilize unlabeled sample information and improve the classification accuracy of hyperspectral images with small samples.
【作者单位】: 中国人民解放军信息工程大学地理空间信息学院;
【基金】:国家自然科学基金资助项目(41501482) 河南省科技攻关计划资助项目(15202210014) 地理信息工程国家重点实验室开放基金资助项目(SKLGIE2015-M-3-1,SKLGIE2015-M-3-2)
【分类号】:TP751

【相似文献】

相关期刊论文 前10条

1 甘甫平;王润生;;高光谱遥感技术在地质领域中的应用[J];国土资源遥感;2007年04期

2 余旭初;杨国鹏;冯伍法;周欣;;基于简约集支持向量机的高光谱影像分类[J];计算机科学;2010年11期

3 李新双;张良培;李平湘;吴波;;基于小波分量特征值匹配的高光谱影像分类[J];武汉大学学报(信息科学版);2006年03期

4 杨可明;陈云浩;郭达志;蒋金豹;;基于高光谱影像的小麦条锈病光谱信息探测与提取(英文)[J];光子学报;2008年01期

5 苏俊英;舒宁;;一种基于非线性增益小波滤波的高光谱影像去噪技术研究[J];遥感技术与应用;2008年04期

6 孙伟伟;刘春;施蓓琦;李巍岳;;基于随机矩阵的高光谱影像非负稀疏表达分类[J];同济大学学报(自然科学版);2013年08期

7 杨可明;李慧;郭达志;;基于最佳小波包基的高光谱影像特征制图[J];测绘学报;2008年01期

8 杨国鹏;余旭初;刘伟;陈伟;;基于支持向量机的高光谱影像分类研究[J];计算机工程与设计;2008年08期

9 董超;赵慧洁;;关联向量机在高光谱影像分类中的应用[J];遥感学报;2010年06期

10 董超;田联房;赵慧洁;;遗传关联向量机高光谱影像分类[J];上海交通大学学报;2011年10期

相关会议论文 前10条

1 舒宁;胡颖;;基于地物光谱特征的高光谱影像边缘提取方法[A];地理空间信息技术与应用——中国科协2002年学术年会测绘论文集[C];2002年

2 舒宁;;多光谱和高光谱影像纹理分析的几种方法[A];第十五届全国遥感技术学术交流会论文摘要集[C];2005年

3 于美娇;董广军;张永生;纪松;杨靖宇;;一种基于极大后验估计的高光谱影像分辨率增强方法[A];图像图形技术与应用进展——第三届图像图形技术与应用学术会议论文集[C];2008年

4 董广军;纪松;朱朝杰;;基于局部线性嵌入流形学习的高光谱影像分类技术[A];第六届全国信息获取与处理学术会议论文集(3)[C];2008年

5 汪玮;周可法;王金林;周曙光;刘慧;;环境减灾卫星高光谱数据预处理[A];第十二届全国数学地质与地学信息学术研讨会论文集[C];2013年

6 黄远程;张良培;李平湘;;基于最小单形体体积约束的高光谱影像端元光谱提取[A];遥感定量反演算法研讨会摘要集[C];2010年

7 刘庆杰;蔺启忠;王黎明;王钦军;李庆亭;苗峰显;;基于CFFT最优信噪比的星载高光谱影像噪声抑制研究[A];第十七届中国遥感大会摘要集[C];2010年

8 张杰林;;砂岩型铀矿床高光谱数据挖掘技术研究[A];第十五届全国遥感技术学术交流会论文摘要集[C];2005年

9 董彦芳;庞勇;;高光谱影像与LiDAR数据融合提取城市目标提取[A];中国地震学会空间对地观测专业委员会2013年学术研讨会论文摘要集[C];2013年

10 李飞;周成虎;陈荣国;;基于光谱曲线形态的高光谱影像检索方法研究[A];第二届中国科学院博士后学术年会暨高新技术前沿与发展学术会议程序册[C];2010年

相关博士学位论文 前8条

1 刘轲;冬小麦叶面积指数高光谱遥感反演方法研究[D];中国农业科学院;2015年

2 杨国鹏;基于机器学习方法的高光谱影像分类研究[D];解放军信息工程大学;2010年

3 路威;面向目标探测的高光谱影像特征提取与分类技术研究[D];中国人民解放军信息工程大学;2005年

4 杨哲海;高光谱影像分类若干关键技术的研究[D];解放军信息工程大学;2006年

5 王凯;基于多特征融合的高光谱影像地物精细分析方法研究[D];武汉大学;2013年

6 杜辉强;高光谱遥感影像滤波和边缘提取方法研究[D];武汉大学;2004年

7 韦玮;基于多角度高光谱CHRIS数据的湿地信息提取技术研究[D];中国林业科学研究院;2011年

8 龚鑓;基于HDA和MRF的高光谱影像同质区分析[D];武汉大学;2007年

相关硕士学位论文 前10条

1 司海青;含水量对土壤有机质含量高光谱估算的影响研究[D];中国农业科学院;2015年

2 汪重午;基于高光谱线性混合模型的地质勘查研究[D];成都理工大学;2015年

3 原娟;面向高光谱地物的在轨替代光谱定标影响因子分析[D];浙江农林大学;2015年

4 魏祥坡;高光谱影像土质要素和人工地物分类技术研究[D];解放军信息工程大学;2015年

5 康苒;松嫩平原典型土壤有机质高光谱预测模型研究[D];东北农业大学;2016年

6 张颖;基于主动学习的高光谱影像分类[D];成都理工大学;2016年

7 张风;基于子空间学习的高光谱影像地物分类[D];西安电子科技大学;2015年

8 刘瑞香;基于多尺度局部二值模式的高光谱图像分类算法研究[D];西安石油大学;2016年

9 刘怡君;基于机载LiDAR和高光谱遥感影像融合实现普洱山区树种分类[D];中国林业科学研究院;2016年

10 董连凤;高光谱影像预处理技术研究[D];长安大学;2007年



本文编号:1641055

资料下载
论文发表

本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/1641055.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户cd37b***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com