减压膜蒸馏用于纤维素溶剂N-甲基吗啉-N-氧化物浓缩回收研究
本文选题:减压膜蒸馏 切入点:绿色溶剂 出处:《纺织学报》2017年08期
【摘要】:为解决纤维素绿色溶剂N-甲基吗啉-N-氧化物(NMMO)传统浓缩回收工艺存在的能耗高、回收率低等不足,提出基于减压膜蒸馏(VMD)技术的NMMO浓缩回收方法。通过考察VMD过程中真空度、料液流速、料液温度、料液浓度对膜蒸馏过程的影响,并对深度浓缩的可行性和体系运行稳定性进行研究。结果表明:膜蒸馏通量随真空度、料液流速、料液温度的增大而增大,随料液浓度的增大而减小,产水浓度随真空度的增大而减小,而料液流速、料液温度、料液浓度对产水浓度影响不明显;采用VMD过程可成功将初始质量浓度为100 g/L的NMMO溶液浓缩至467.2 g/L,体系在连续5个浓缩周期共60 h的运行过程中,保持了较好的运行稳定性,对NMMO的截留率始终保持在99.88%以上。所提方法具有良好的技术可行性。
[Abstract]:In order to solve the problems of high energy consumption and low recovery rate in the traditional concentration and recovery process of cellulose green solvent N- methylmorpholine-NMMO-NMMO.The NMMO concentration and recovery method based on vacuum membrane distillation (VMD) technology was put forward, and the vacuum degree in VMD process was investigated. The effects of flow rate, temperature and concentration of feed liquid on the process of membrane distillation were studied. The feasibility of deep concentration and the stability of the system were studied. The results show that the flux of membrane distillation depends on the vacuum degree and the flow rate of feed liquid. With the increase of the temperature of the feed liquid, the concentration of water will decrease, and the concentration of the water will decrease with the increase of the vacuum degree. However, the flow rate, temperature and concentration of the feed liquid have no obvious effect on the concentration of the water. The solution of NMMO with initial concentration of 100g / L can be successfully condensed to 467.2 g / L by VMD process. The system has a good stability in the process of 60 h continuous concentration for 5 cycles. The rejection rate of NMMO remains above 99.88%. The proposed method has good technical feasibility.
【作者单位】: 天津工业大学分离膜与膜过程国家重点实验室;天津工业大学材料科学与工程学院;
【基金】:国家自然科学基金青年基金项目(21404079)
【分类号】:TQ028.8;TQ413
【相似文献】
相关期刊论文 前10条
1 刘立华;膜蒸馏技术进展[J];唐山师范学院学报;2002年05期
2 吴庸烈;膜蒸馏技术及其应用进展[J];膜科学与技术;2003年04期
3 马润宇;膜蒸馏技术的回顾与展望[J];天津城市建设学院学报;2003年02期
4 吴国斌;戚俊清;吴山东;;膜蒸馏分离技术研究进展[J];化工装备技术;2006年01期
5 王许云;张林;陈欢林;;膜蒸馏技术最新研究现状及进展[J];化工进展;2007年02期
6 李贝贝;张元秀;王树立;;膜蒸馏和膜吸收技术现状及发展[J];化工科技;2007年05期
7 曾理;高从X&;;膜蒸馏在冶金工业中的应用前景[J];膜科学与技术;2008年06期
8 程鹏高;唐娜;王学魁;;减压膜蒸馏浓缩盐水溶液的研究现状[J];化工进展;2008年07期
9 环国兰;杜启云;王薇;;膜蒸馏技术研究现状[J];天津工业大学学报;2009年04期
10 崔洪江;孙培廷;田瑞;;太阳能膜蒸馏实验与数学建模[J];大连海事大学学报;2010年01期
相关会议论文 前10条
1 吕晓龙;;膜蒸馏过程探讨[A];第四届中国膜科学与技术报告会论文集[C];2010年
2 余献国;;膜蒸馏应用领域与材料及设备集成化研究[A];第四届中国膜科学与技术报告会论文集[C];2010年
3 吴莉莉;李昕;赵之平;;超声波强化膜蒸馏研究进展[A];中国化工学会2009年年会暨第三届全国石油和化工行业节能节水减排技术论坛会议论文集(上)[C];2009年
4 杨座国;刘典;;真空膜蒸馏过程的模拟研究[A];上海市化学化工学会2011年度学术年会论文集[C];2011年
5 吴庸烈;;膜蒸馏技术及其应用进展[A];中国膜科学与技术报告会论文集[C];2003年
6 纪仲光;王军;侯得印;尹子飞;;微波辅助真空膜蒸馏试验研究[A];第四届中国膜科学与技术报告会论文集[C];2010年
7 韩怀远;高启君;吕晓龙;武春瑞;贾悦;王暄;陈华艳;;封闭式热泵循环的真空膜蒸馏过程研究[A];第四届中国膜科学与技术报告会论文集[C];2010年
8 吕晓龙;武春瑞;高启君;陈华艳;贾悦;王暄;;膜蒸馏技术进展[A];第五届全国医药行业膜分离技术应用研讨会论文集[C];2012年
9 潘林梅;郭立玮;;膜蒸馏技术在中药提取液浓缩工序中的应用问题探讨[A];第五届全国医药行业膜分离技术应用研讨会论文集[C];2012年
10 吕晓龙;;膜蒸馏技术应用研究[A];第四届全国膜分离技术在冶金工业中应用研讨会论文集[C];2014年
相关博士学位论文 前10条
1 关云山;膜蒸馏—结晶耦合从盐湖卤水制备KCl的研究[D];山西大学;2015年
2 刘建军;以秸秆为原料生产生物丁醇过程中关键问题的研究[D];天津大学;2015年
3 王子铱;应用于膜蒸馏过程的PVDF中空纤维膜的制备及超疏水改性[D];天津大学;2015年
4 王俊伟;氮化硅基陶瓷膜的制备及膜蒸馏应用研究[D];中国科学技术大学;2016年
5 刘乾亮;膜蒸馏工艺处理高浓度氨氮废水的研究[D];哈尔滨工业大学;2012年
6 田瑞;高通量空气隙膜蒸馏系统的机理及应用研究[D];内蒙古工业大学;2008年
7 杜军;减压膜蒸馏及其分离含铬溶液的研究[D];重庆大学;2002年
8 王宏涛;错流式减压膜蒸馏过程分析及组件放大特性研究[D];天津大学;2012年
9 王丽;减压膜蒸馏节能过程应用基础研究[D];天津大学;2013年
10 唐建军;减压膜蒸馏应用于稀土冶金资源综合回收的研究[D];中南大学;2002年
相关硕士学位论文 前10条
1 田苗苗;高通量、耐污染、超疏水的膜蒸馏用膜的制备及应用研究[D];郑州大学;2015年
2 魏文龙;热电制冷膜蒸馏系统数值模拟及实验研究[D];内蒙古工业大学;2015年
3 姜钦亮;PVDF静电纺丝纳米纤维疏水膜的制备及其膜蒸馏特性研究[D];南昌大学;2015年
4 金畅;膜蒸馏技术处理放射性废水研究[D];南华大学;2015年
5 刘芮;新型热回收式组合膜蒸馏组件的研究[D];天津大学;2014年
6 王平;多效膜蒸馏用于浓缩多种无机盐水溶液和反渗透浓水[D];天津大学;2014年
7 刘晶;多效膜蒸馏技术用于氢氧化钠稀溶液和地下盐卤的浓缩[D];天津大学;2014年
8 苏华;基于PVDF纳米纤维膜的膜蒸馏技术处理印染废水的研究[D];浙江理工大学;2016年
9 王世选;可旋转式太阳能集热器减压膜蒸馏海水淡化装置的实验研究[D];武汉纺织大学;2016年
10 马骏;天然气脱硫液真空膜蒸馏法再生理论与实验研究[D];常州大学;2016年
,本文编号:1657997
本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/1657997.html