涡轮气流分级机工艺参数的优化与研究
本文选题:涡轮气流分级机 + 工艺参数 ; 参考:《西南科技大学》2017年硕士论文
【摘要】:目前,超细粉体材料正在渗入整个工业部门和高技术领域,更被誉为现代高新技术的原点,已应用到化工、轻工、冶金、电子、高技术陶瓷、生物医学以及国防尖端技术等领域。用粉碎法生产超细粉体,很难一次通过粉碎就能达到所需粒度要求,必须要通过分级的方式将粒度达到要求的产品分离出来加以利用。因此能够控制分级粒径,提高分级精度,对超细粉体材料的制备来说具有重要意义。涡轮气流分级机是一种典型的干法超细粉分级设备,由于其分级范围广、分级精度高等优点在超细粉体工业中应用十分广泛。但从目前的文献来看,对涡轮气流分级机的工艺参数研究还存在不足。本文对涡轮气流分级机的相关理论、结构进行了介绍,将现有国内外先进的气流分级机进行了分类说明。对现有的分级机性能评价指标进行了分析,在现有指标的基础上进行了改进,得到了一种适用于工程领域的分级机性能评价指标。针对分级机二次风清洗参数进行了实验研究,得出了分级机二次风量、二次风上升气流速度对分级机相对分级精度的影响规律。由实验结果可知,LNJ-36A系列涡轮气流分级机的最佳二次风量为150m3/h,最佳二次风量下的最优二次风上升气流速度为3.91~4.73m/s,分级机调隙锥的最优间隙值为12.5~15mm。为了更好地分析实验现象,对分级机二次风清洗区域的流场进行了数值模拟,得出分级机二次风有效清洗区域为0~110mm,同时得到了二次风清洗区域的流场分布规律。针对分级机端面密封参数进行了实验研究,得出了分级机端面密封间隙、气流密封压力对分级机相对分级精度的影响规律。由实验结果可知,LNJ-36A系列涡轮气流分级机的适宜端面密封间隙为3mm,其最佳气流密封压力为0.15MPa。同时通过对分级机端面密封区域流场的数值模拟,得出气流密封失效压力为0.05MPa,同时得到了有无气封的流场情况,为实验结果作出了进一步解释。
[Abstract]:At present, ultrafine powder materials are infiltrating into the entire industrial sector and high-tech fields, and are also regarded as the origin of modern high and new technology. They have been applied to chemical, light, metallurgical, electronic, high-tech ceramics,Biomedicine and defense cutting-edge technology and other areas.It is difficult to achieve the required particle size by grinding the ultrafine powder in one time, and it is necessary to separate and utilize the products with the required particle size by means of classification.Therefore, it can control the particle size and improve the classification accuracy, which is of great significance to the preparation of ultrafine powder materials.Turbine airflow classifier is a typical dry ultrafine powder classifier. It is widely used in ultrafine powder industry because of its wide classification range and high classification accuracy.However, according to the current literature, the research on the technological parameters of the turbine airflow classifier is still insufficient.In this paper, the theory and structure of turbine classifier are introduced, and the advanced airflow classifiers at home and abroad are classified and explained.The existing performance evaluation index of classifier is analyzed and improved on the basis of the existing index, and a performance evaluation index suitable for engineering field is obtained.Based on the experimental study of the secondary air cleaning parameters of the classifier, the influence of the secondary air volume and the secondary air updraft velocity on the relative classification accuracy of the classifier is obtained.The experimental results show that the optimal secondary air flow rate of LNJ-36A series turbine air classifier is 150 m3 / h, the optimal secondary air flow velocity is 3.91 ~ 4.73 m / s, and the optimal clearance value of the clearance cone of classifier is 12.5 ~ 15 m ~ (-1) m ~ (-1) 路L ~ (-1) 路L ~ (-1) 路L ~ (-1) 路L ~ (-1) 路L ~ (-1) 路L ~ (-1) 路L ~ (-1) 路L ~ (-1).In order to better analyze the experimental phenomena, the flow field in the secondary air cleaning area of the classifier is numerically simulated. It is concluded that the effective cleaning area of the secondary air of the classifier is 0 ~ 110mm, and the flow field distribution law of the secondary air cleaning area is obtained.Based on the experimental study on the sealing parameters of the end face of the classifier, the influence of the seal clearance on the end face of the classifier and the pressure of the airflow seal on the relative classification accuracy of the classifier is obtained.The experimental results show that the suitable end face seal clearance of LNJ-36A series turbine airflow classifier is 3 mm and the optimum airflow seal pressure is 0.15 MPA.Through the numerical simulation of the flow field in the sealing area of the end face of the classifier, the failure pressure of the airflow seal is obtained to be 0.05MPa, and the flow field with or without the gas seal is obtained, which further explains the experimental results.
【学位授予单位】:西南科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TB44
【相似文献】
相关期刊论文 前10条
1 蒋晓刚;;超细气流分级机转笼的结构优化设计[J];机床与液压;2011年10期
2 郑志宏;;我国第一台高目数气流分级机研制成功[J];建材工业信息;1993年16期
3 陆厚根;;离心逆流式气流分级机分级粒径的计算与分析[J];同济大学学报(自然科学版);1992年03期
4 梅芳;陆厚根;;涡轮式气流分级机分级过程的数学分析[J];上海建材学院学报;1995年02期
5 黎国华,,朱昆泉;精密气流分级机的研究[J];武汉工业大学学报;1994年04期
6 沈义俊;新型气流分级机结构设计及参数计算[J];流体机械;1996年04期
7 陈海焱;陈文梅;胥海伦;;气流分级机操作参数对分级性能的影响[J];四川大学学报(工程科学版);2006年03期
8 侯志强;侯书军;彭伟;赵月静;;超细气流分级机高速转子系统固有频率的计算[J];矿山机械;2010年23期
9 操龙青;陈代彦;凌兴国;;浅谈V型气流分级机的分级效率[J];四川建材;2012年04期
10 邢文杰;齐砚勇;;气流分级机转速的模糊PID控制研究[J];自动化仪表;2013年10期
相关会议论文 前1条
1 郑恒生;盖国胜;丁建平;;干式气流分级机的研制及其在磨料生产中的应用[A];第四届全国颗粒制备与处理学术会议论文集[C];1995年
相关硕士学位论文 前4条
1 张璐凡;气流分级机分级过程的数值模拟[D];中国海洋大学;2015年
2 曾川;涡轮气流分级机工艺参数的优化与研究[D];西南科技大学;2017年
3 杨啸;气流分级机自动控制系统的研究[D];中国矿业大学;2014年
4 李恒恒;抛散型气流分级机性能研究与结构优化[D];中国矿业大学;2014年
本文编号:1765495
本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/1765495.html