当前位置:主页 > 管理论文 > 工程管理论文 >

气体溶解和析出的仿真与试验研究

发布时间:2018-04-30 17:14

  本文选题:压力曲线 + 气体溶解和析出时间常数 ; 参考:《电子科技大学》2017年硕士论文


【摘要】:在液压系统中,由于压力的变化导致液体中发生气体溶解和析出过程,从而出现气泡和气穴的产生及破灭现象,而气泡和气穴的产生及破灭不但会引起系统的压力变化,对组成系统的元件产生破坏及失效,最终致使系统的工作性能下降。此外,在石油化工设计和生产中,气液分离技术的分离效果主要由气体溶解和析出过程中相关参数决定。因此本课题对气体溶解和析出过程进行研究是十分必要的。本课题是对液体中气体溶解和析出现象进行仿真与试验研究,其主要内容为:(1).根据流体力学中的亨利定律和理想气体状态方程构建气体溶解和析出过程的数学模型以及推导气体在液体中溶解度的基本方程。(2).基于MATLAB仿真软件,对所构建的数学模型进行仿真分析。然后在仿真研究中通过改变溶液液面上初始平衡压力、气液体积比和气体溶解度,得到气体溶解和析出过程中压力及液体中溶解气体体积的仿真曲线。(3).设计并搭建试验平台,并通过电动振动系统加速试验过程,然后根据试验数据的误差分析提出试验平台优化与改进的方法,最后通过改进后的试验平台优化了试验方案与试验步骤。(4).对气体溶解和析出过程进行试验研究,得到不同试验条件下对抗磨液压油、工业齿轮油和纯水进行试验的压力变化曲线,同时确定了每种溶液在不同气液体积比条件下的气体溶解和析出时间常数。最后根据测量空气在液体中的溶解度,对气体溶解和析出过程中压力的试验曲线与仿真曲线进行对比。本文提出了气体溶解和析出过程中压力及溶解气体体积的数学模型,并对模型的影响因素进行仿真研究;试验平台通过电动振动系统,加速气体溶解和析出试验过程;通过气体溶解和析出过程中压力的仿真结果和试验结果对比,验证了数学模型的正确性,同时通过试验数据确定了不同液体在改变气液体积比条件下的气体溶解和析出时间常数,为液压脉动管路气泡模型研究奠定基础。
[Abstract]:In the hydraulic system, the process of gas dissolution and precipitation in the liquid is caused by the change of pressure, resulting in the emergence and disintegration of bubbles and cavitation, and the emergence and disintegration of bubbles and cavitation can not only cause the change of the pressure of the system, but also break and failure to the components of the system and eventually lead to the decline of the performance of the system. In addition, in the design and production of petrochemical industry, the separation effect of gas and liquid separation technology is mainly determined by the related parameters in the process of gas dissolution and precipitation. Therefore, it is very necessary to study the process of gas dissolution and precipitation. This topic is the simulation and experimental study of the gas dissolution and analysis in the liquid. The contents are as follows: (1) according to Henry's law and ideal gas state equation in fluid mechanics, the mathematical model of gas dissolving and precipitation process and the basic equation for deriving the solubility of gas in liquid are established. (2) based on MATLAB simulation software, the mathematical model is simulated and analyzed. Then the solution is changed in the simulation study. The initial balance pressure, the volume ratio of gas-liquid and gas solubility on the liquid surface, the simulation curves of pressure and dissolved gas volume in the process of gas dissolution and precipitation are obtained. (3) the test platform is designed and built, and the test process is accelerated through the electric vibration system. Then, the test platform is optimized and modified according to the error analysis of the test data. In the end, the test scheme and the test steps were optimized by the improved test platform. (4) the process of gas dissolution and precipitation was tested, and the pressure change curves were obtained under different test conditions against grinding hydraulic oil, industrial gear oil and pure water, and each solution in different gas and liquid volume ratio strips was determined. Finally, according to the solubility of the air in the liquid, the test curve of the pressure in the process of dissolved and precipitated gas is compared with the simulation curve. The mathematical model of the pressure and the volume of dissolved gas in the process of gas dissolution and precipitation is put forward, and the influence factors of the model are imitated. True research; the test platform accelerates the process of gas dissolution and precipitation through the electric vibration system. Through the comparison of the simulation results of the pressure in the process of gas dissolution and precipitation, the correctness of the mathematical model is verified. At the same time, the gas dissolution and analysis of different liquids under the condition of changing the volume ratio of gas to liquid are determined by the test data. The time constant is the basis for studying the bubble model of hydraulic pulsating pipeline.

【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TH137

【参考文献】

相关期刊论文 前10条

1 李玉星;张建;李曼曼;;超临界CO_2在稠油中的溶解度以及体积系数研究[J];科学技术与工程;2013年01期

2 李侯明;;变压器油中溶解气体在线监测发展现状[J];电气开关;2012年01期

3 王淑华;张华;王经;;管内低温两相弹状流特性试验研究——弹状气泡长度分布[J];上海交通大学学报;2009年08期

4 牟学春;凌开成;张海军;;氢气在煤焦油中平衡溶解度的研究[J];煤炭转化;2009年01期

5 蒋丹;李松晶;包钢;;采用遗传算法对压力脉动过程中气泡模型参数的辨识[J];物理学报;2008年08期

6 郭关柱;范毓润;贾风昌;;空气在二甲基硅油和液压油中的溶解度[J];物理化学学报;2008年07期

7 赵晔;罗治强;赵玉柱;;2007年国家电网安全运行情况分析[J];中国电力;2008年05期

8 王彦华;;液压系统油液中气泡的防范[J];装备制造技术;2007年09期

9 朱天星;凌开成;申峻;王迎春;张海军;;氢气在煤液化油中溶解度的测定[J];煤炭转化;2006年03期

10 唐勰,张福荣,邓朝结,林晖;基于数控机床液压系统中气泡危害的研究[J];机械研究与应用;2005年04期

相关硕士学位论文 前1条

1 李来君;高压高效气液分离器的应用研究[D];西安石油大学;2014年



本文编号:1825435

资料下载
论文发表

本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/1825435.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户384c9***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com