当前位置:主页 > 管理论文 > 工程管理论文 >

岷江上游泥石流胁迫下山区聚落人口易损性评价

发布时间:2018-05-21 13:17

  本文选题:岷江上游 + 七盘沟村 ; 参考:《西南科技大学》2017年硕士论文


【摘要】:在不同尺度下,人口易损性的影响因素不同,所用评价方法也会有所区别。因此本文选取了岷江上游和七盘沟村为研究对象,其中岷江上游为中尺度范围,七盘沟村为小尺度范围,即典型区域,并根据实际情况筛选评价指标,建立岷江上游人口易损性和七盘沟村人口易损性的评价指标,分别分析了两种尺度下人口易损性的不同。岷江上游的中尺度评价基于信息量模型,得出整个岷江上游人口易损性区划图。小尺度七盘沟村为典型区,基于MATLAB的SOM模型和ArcGIS支持下,获取了研究区各居户在泥石流威胁下聚落易损性高低(易损性大小)的分布图。本文的主要研究内容和研究成果如下:(1)本文通过筛选,选取了修正人口密度、人均GDP、万人医生数、万人病床数、监测点、劳动人口比例6个评价因子作为研究区的人口易损性评价指标,以5050?的网格为评价单元,将岷江上游划分为9192246个网格单元,并通过信息量模型的计算得到区域易损图。(2)通过分析发现,岷江上游整体人口易损性偏低,低易损区所占比例为91.09%;高人口易损区所占比例为3.78%。高易损区主要集中在汶川县、茂县、理县境内。(3)通过对各评价因子图和岷江上游人口区划图的分析对比可知:人口易损性基本与修正人口密度成正相关,与万人病床数、万人医生数、人均GDP、监测点、劳动人口比例呈负相关。一个地区修正人口密度越大,人口密度会增加系统人口易损性,而在其他因素综合作用下会降低系统人口易损性。人口密度、万人病床数、万人医生数、人均GDP是人口易损性的关键因素,对人口易损性的影响较大,劳动人口比例和监测点的影响相对较低。(4)在实地考察的基础上,结合影像的解译分析,选择了家庭规模、年龄结构、健康状况、民族特征、文化程度,与泥石流沟的距离6个指标作为典型区-七盘沟村人口易损性的评价因子,应用自组织神经网络模型(Self organized maps,简称SOM)进行研究区人口易损性评价,SOM模型的优点在于能够回避人为主观因素对各评价指标权重的影响。(5)通过研究发现:七盘沟村易损性高的区域主要集中在居户密集处,易损性以为沟口最大,向四周递减;极高、高易损性区域所占比例分别为3.52%、4.90%,比例最小;低、极低易损性区域所占比例分别为22.98%、60.06%,比例最大。根据SOM模型得出U-矩型阵与18个变量的平面信息图分析可以发现,人口易损性较高的多为中等家庭或大家庭、少数民族,教育程度较低,距离泥石流沟0-300m的住户;年龄结构与身体状况对人口易损性有一定影响,但是影响程度较低,与研究区实际情况基本符合。
[Abstract]:At different scales, the factors affecting the vulnerability of the population are different, and the evaluation methods will be different. So this paper selects the upper reaches of Minjiang River and Qipangou Village as the research object, in which the upper reaches of Minjiang River is mesoscale range, Qipangou Village is small scale range, that is, typical area, and the evaluation index is screened according to the actual situation. The evaluation indexes of population vulnerability in upper reaches of Minjiang River and Qipangou Village were established and the differences of population vulnerability in two scales were analyzed respectively. The mesoscale evaluation of the upper reaches of Minjiang River is based on the information quantity model, and the map of vulnerability of the whole population in the upper reaches of Minjiang River is obtained. The small scale Qipangou village is a typical area. Based on the SOM model of MATLAB and the support of ArcGIS, the distribution map of vulnerability (vulnerability) of families in the study area under the threat of debris flow is obtained. The main research contents and results of this paper are as follows: (1) through screening, we select the revised population density, per capita GDP, the number of doctors per 10,000, the number of beds per 10,000 people, and the monitoring points. The ratio of labor force to six evaluation factors is used as the evaluation index of population vulnerability in the study area, taking 5050,050,5050,500? The upper reaches of Minjiang River are divided into 919,246 grid units, and the regional vulnerability map is obtained by the calculation of the information content model. The analysis shows that the overall population vulnerability of the upper reaches of Minjiang River is relatively low. The proportion of low vulnerable area is 91 09, and that of high population vulnerable area is 3. 78%. The high vulnerability areas are mainly concentrated in Wenchuan County, Maoxian County and Lixian County. (3) through the analysis and comparison of each evaluation factor map and the population zoning map of the upper reaches of Minjiang River, it can be seen that the population vulnerability is positively related to the revision of population density and is related to the number of hospital beds per 10,000 people. The number of doctors per capita, the monitoring points, and the proportion of the working population were negatively correlated. The more the population density is corrected in a region, the more vulnerable the system population will be, and the lower the vulnerability of the system population will be under the combined action of other factors. The population density, the number of hospital beds, the number of doctors and the GDP per capita are the key factors of the vulnerability of the population. The impact on the vulnerability of the population is greater, and the impact of the ratio of the working population and the monitoring points is relatively low. Combined with the interpretation and analysis of the image, 6 indexes, such as family size, age structure, health status, ethnic characteristics, education level and distance from debris flow gully, were selected as the evaluation factors of population vulnerability in Qipangou village, a typical area. Using self organized mapsto evaluate population vulnerability in study area the advantage of SOM model is that it can avoid the influence of human subjective factors on the weight of evaluation indexes. Areas with high vulnerability are concentrated in densely populated areas, The vulnerability is the largest in the gully, decreasing in the surrounding area, and the proportion in the extremely high and high vulnerable area is 3.52 and 4.90, respectively, the proportion is the smallest, and the proportion in the low, extremely low vulnerability area is 22.98 and 60.06, respectively, with the largest proportion. According to the SOM model, the U- matrix and 18 variables of the plane information map analysis can be found that the most vulnerable population is middle or large families, ethnic minorities, low education, 0-300m distance from debris flow gully households; The age structure and physical condition have certain influence on the vulnerability of population, but the influence degree is low, which is basically consistent with the actual situation in the study area.
【学位授予单位】:西南科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P642.23

【相似文献】

相关期刊论文 前10条

1 溥发鼎;岷江上游生态学现状及生物多样性保护[J];资源科学;2000年05期

2 郭永明,汤宗祥;岷江上游水土流失及其防治[J];山地研究;1995年04期

3 田雨;方自力;谢强;潘红丽;刘兴良;;岷江上游植被在汶川地震中的损毁及灾后恢复状况[J];长江流域资源与环境;2014年05期

4 李崇巍,刘世荣,孙鹏森,葛剑平;岷江上游景观格局及生态水文特征分析[J];生态学报;2005年04期

5 张一平,张昭辉,何云玲;岷江上游气候立体分布特征[J];山地学报;2004年02期

6 丁瑞华;;岷江上游鱼类及保护问题[J];四川动物;2006年04期

7 李崇巍,刘世荣,孙鹏森,张远东,葛剑平;岷江上游植被冠层降水截留的空间模拟[J];植物生态学报;2005年01期

8 包维楷,陈庆恒,陈克明;岷江上游干旱河谷植被恢复环境优化调控技术研究[J];应用生态学报;1999年05期

9 王青;石敏球;郭亚琳;张宇;;岷江上游山区聚落生态位垂直分异研究[J];地理学报;2013年11期

10 向双,丁建林;岷江上游干旱河谷葡萄的气候生态适宜性分析[J];中外葡萄与葡萄酒;2003年03期

相关会议论文 前4条

1 陈秀明;李荣伟;王乐辉;宿以明;何飞;蔡小虎;孙鹏;;岷江上游亚高山典型森林植被群落数量特征研究[A];中国林学会2004年年会论文集[C];2004年

2 陈秀明;李荣伟;王乐辉;宿以明;何飞;蔡小虎;孙鹏;;岷江上游亚高山典型森林植被群落数量特征研究[A];2004中国科协学术年会第十一分会场论文集[C];2004年

3 李锦;;岷江上游城镇功能变迁对民族文化的影响[A];民族文化与全球化学术研讨会论文集[C];2003年

4 丁瑞华;;岷江上游鱼类及其保护问题[A];四川省动物学会第八次会员代表大会暨第九次学术年会论文集[C];2004年

相关重要报纸文章 前4条

1 王志琦;岷江上游六家水电厂结盟[N];华中电力报;2004年

2 新华社记者 贾立君;长江上游生态之“伤”怎样愈合?[N];新华每日电讯;2005年

3 四川记者站;再造岷江秀美山河[N];科技日报;2003年

4 王代林;岷江源种树人力与天力的五年拉锯战[N];四川日报;2007年

相关博士学位论文 前5条

1 刘京涛;岷江上游植被蒸散时空格局及其模拟研究[D];中国林业科学研究院;2006年

2 严代碧;岷江上游干旱河谷区退化植被特征及其恢复重建的研究[D];北京林业大学;2006年

3 李梅;岷江上游辐射松人工林种质资源及土壤生物肥力评价[D];四川农业大学;2009年

4 徐留兴;岷江上游径流变化特性分析及其预测研究[D];四川大学;2006年

5 张炜银;岷江上游植被自然恢复灌丛阶段群落生态特征[D];中国林业科学研究院;2005年

相关硕士学位论文 前10条

1 翟真;岷江上游退耕还林对林树下线变化的影响[D];西南科技大学;2015年

2 杨意志;岷江上游民族地区小城镇土地利用评价研究[D];西南民族大学;2016年

3 杨丽华;先秦岷江上游地区与北方地区的关系[D];四川省社会科学院;2015年

4 黄英;岷江上游泥石流胁迫下山区聚落人口易损性评价[D];西南科技大学;2017年

5 张启东;岷江上游水沙变化与森林破坏的关系研究[D];西南大学;2006年

6 孙吉;岷江上游历史文化景观与环境动因[D];四川大学;2006年

7 全Oz;岷江上游民族分布与环境特征的景观生态学研究[D];四川大学;2006年

8 卢涛;岷江上游植物物种多样性与生态系统多样性研究[D];西北农林科技大学;2004年

9 秦嘉励;岷江上游不同土地利用方式下土壤生态系统服务价值评估研究[D];四川农业大学;2009年

10 张冬贵;岷江上游水源区地质背景与水资源可持续利用研究[D];成都理工大学;2012年



本文编号:1919351

资料下载
论文发表

本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/1919351.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户57892***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com