考虑磁滞瞬态损耗的GMA在振动主动控制中的应用
发布时间:2018-05-28 08:22
本文选题:超磁致伸缩致动器 + 磁滞损耗 ; 参考:《武汉理工大学》2014年硕士论文
【摘要】:随着技术的发展,柔性结构的应用日益广泛,特别是在精密仪器仪表的测量与使用场合。由于柔性结构的大挠度、小阻尼等特点,结构的振动依靠自身衰减需要很长时间,影响仪器的准确性,因而需要对柔性结构的振动进行主动控制。超磁致伸缩致动器以其响应快,应变大的特点,在振动主动控制中越来越广泛。本文以超磁致伸缩致动器的动态模型为基础,以悬臂梁为被控对象,研究了超磁致伸缩致动器在考虑磁滞损耗时对悬臂梁的振动主动控制。主要完成了以下研究工作: (1)研究了超磁致伸缩致动器(GMA)的结构设计。考虑磁滞损耗的影响,采用堆叠结构的GMM棒,完成GMA整体结构设计,同时对GMA进行了电磁分析,验证结构的合理性,并完成了GMA实物的加工。 (2)研究了磁滞损耗。为了考虑磁滞损耗的影响,引入了磁滞损耗滞后的概念,并将磁滞损耗以虚部的形式反映到压磁方程的相关参数上,建立了致动器的动态模型。搭建了阻抗测试实验平台,通过实验测得了致动器线圈的阻抗-频率关系曲线,并求得了磁滞损耗所产生的相位滞后角的大小。 (3)研究了系统建模,,包括悬臂梁的动态微分方程、超磁致伸缩致动器的传递函数模型,利用ANSYS分析确定了悬臂梁的各参数,研究了独立模态空间控制方法,完成了模态增益等参数的求取。完成了悬臂梁的实物加工。 (4)研究了模糊PID控制的设计。在传统PID控制的基础上,通过MATLAB完成了PID控制器的初始参数整定,将模糊控制与传统PID控制结合,根据实际的控制经验,得到了具有一定自适应能力的控制器。最后通过仿真得到了在模糊PID控制器作用下系统对阶跃输入的响应曲线。 (5)研究了振动主动控制系统实验。以LabVIEW为编程软件,结合已有的设备条件,搭建了振动主动控制实验系统,研究了在随机激励和激振器激励下,致动器的输出对悬臂梁振动曲线的不同影响。 本课题建立超磁致伸缩致动器在磁滞损耗下的动态模型,并将其应用到柔性结构的振动主动控制中,获得了较好的振动控制效果,为超磁致伸缩致动器在振动主动控制中的进一步实际应用提供一定的参考价值。
[Abstract]:With the development of technology, flexible structures are widely used, especially in the measurement and application of precision instruments. Due to the characteristics of flexible structure such as large deflection and small damping, it takes a long time for the vibration of the structure to be attenuated by itself, which affects the accuracy of the instrument, so it is necessary to control the vibration of the flexible structure actively. Giant Magnetostrictive Actuator (GMA) is widely used in active vibration control due to its fast response and large strain. Based on the dynamic model of Giant Magnetostrictive Actuator (GMA) and the cantilever beam as controlled object, the active vibration control of Giant Magnetostrictive Actuator (GMA) to cantilever beam considering hysteresis loss is studied in this paper. The following research work has been completed: The structure design of Giant Magnetostrictive Actuator (GMA) is studied. Considering the effect of hysteresis loss, the whole structure of GMA is designed by using stacked GMM rod. At the same time, the electromagnetic analysis of GMA is carried out to verify the rationality of the structure, and the processing of GMA is completed. The hysteresis loss is studied. In order to consider the effect of hysteresis loss, the concept of hysteresis loss lag is introduced, and the hysteresis loss is reflected in the form of imaginary part on the parameters of the piezomagnetic equation, and the dynamic model of actuator is established. The impedance test platform was built and the impedance frequency curve of actuator coil was measured. The phase lag angle caused by hysteresis loss was obtained. 3) the system modeling is studied, including the dynamic differential equation of cantilever beam, the transfer function model of giant magnetostrictive actuator, the parameters of cantilever beam are determined by ANSYS analysis, and the independent modal space control method is studied. The modal gain and other parameters are obtained. The material processing of cantilever beam is completed. The design of fuzzy PID control is studied. Based on the traditional PID control, the initial parameter tuning of the PID controller is completed by MATLAB, and the fuzzy control is combined with the traditional PID control. According to the actual control experience, the controller with certain adaptive ability is obtained. Finally, the response curve of the system to step input under the action of fuzzy PID controller is obtained by simulation. The experiment of active vibration control system is studied. Taking LabVIEW as the programming software and combining with the existing equipment conditions, a vibration active control experimental system is built. The different effects of the actuator output on the vibration curve of the cantilever beam under random excitation and vibration exciter excitation are studied. In this paper, the dynamic model of giant magnetostrictive actuator under hysteresis loss is established and applied to the active vibration control of flexible structures. It provides some reference value for the practical application of giant magnetostrictive actuator in active vibration control.
【学位授予单位】:武汉理工大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TB535
【参考文献】
相关期刊论文 前10条
1 关文阁;杨黎萌;魏翠玲;;应用MATLAB计算结构自振频率和振型的一种方法[J];工程地质计算机应用;2004年01期
2 高为国,刘金武;超磁致伸缩材料及其在微机器人中的应用[J];湖南工程学院学报(自然科学版);2003年02期
3 卢全国;陈定方;魏国前;丁建军;;GMM的发展现状及其在精密致动器件中的应用[J];湖北工业大学学报;2006年03期
4 李华;张德远;季远;;磁致伸缩致动器的动态响应特性研究[J];机械科学与技术;2006年03期
5 贾振元,杨兴,郭东明,侯璐景;超磁致伸缩材料微位移执行器的设计理论及方法[J];机械工程学报;2001年11期
6 陶孟仑;陈定方;卢全国;舒亮;赵亚鹏;;超磁致伸缩材料动态涡流损耗模型及试验分析[J];机械工程学报;2012年13期
7 李淑英;王博文;周严;翁玲;王志华;;叠层复合磁致伸缩材料驱动器的输出位移特性[J];仪器仪表学报;2009年01期
8 邬义杰,刘楚辉;超磁致伸缩驱动器设计方法的研究[J];浙江大学学报(工学版);2004年06期
9 曹淑瑛,王博文,闫荣格,黄文美,翁玲;超磁致伸缩致动器的磁滞非线性动态模型[J];中国电机工程学报;2003年11期
10 刚完约,梅德庆,陈子辰,傅龙珠;超磁致伸缩微致动器的磁场有限元分析[J];中国机械工程;2003年22期
本文编号:1945997
本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/1945997.html