大面积氧化物薄膜材料的微纳结构可控制备与性能调控技术
本文选题:氧化物薄膜 + 微纳结构 ; 参考:《浙江大学》2014年博士论文
【摘要】:镀膜玻璃是最主要的新型建筑节能玻璃,既可以保持玻璃的透光性,又可以高效阻隔热量的传递,赋予普通平板玻璃特殊的功能,满足节能、环保、安全和装饰等多种需求,按功能可分为阳光控制镀膜玻璃、低辐射镀膜玻璃、自清洁镀膜玻璃等。利用不同氧化物材料各自的物理和化学性能,采用浮法在线化学气相沉积技术,通过对氧化物薄膜微纳结构与性能的调控,以实现节能镀膜玻璃大面积均匀与高性能的兼顾,在建筑节能领域有着广阔的应用前景。同时,开展纳米尺度氧化物薄膜的可控制备,研究制备工艺-结构-性能之间的相互关系,对于这类材料的发展及应用拓宽具有重要的科学意义。 本文首先简要概述了建筑节能镀膜玻璃的研究与应用现状,主要针对低辐射镀膜玻璃与自清洁镀膜玻璃,重点总结和评述了以SnO2:F为代表的透明导电薄膜和Ti02薄膜的制备与性能的研究现状,以及该类薄膜具有节能效果的原理。针对氧化物薄膜制备中存在的大面积均匀稳定镀膜困难、多层膜结构匹配与节能优化技术缺乏等问题,提出开展新型节能玻璃的材料膜系设计、多层匹配和微结构调控技术的研究,本文采用浮法在线化学气相沉积技术,在玻璃表面首次制得微纳结构SnO2:F薄膜、纳米镶嵌结构SiCxOy薄膜以及纳米Ti02薄膜。采用多种分析测试技术对三类薄膜的结构、均匀性、稳定性、光学性能、电学性能和亲水性等性能进行了研究。同时系统研究了低辐射镀膜玻璃在温度场作用下结构与性能变化的过程与机理。本文主要研究内容和结果如下: (1)采用浮法在线MOCVD法,以单丁基氯化锡和三氟乙酸作为先驱体,通过反应温度、薄膜前驱体流量等工艺参数调控、退火处理等手段控制晶体成核-生长过程,首次在玻璃基体表面制得了大面积、均匀、金红石相、柱状生长的微纳结构SnO2:F薄膜,即薄膜是由尺寸为5nm-10nm的SnO2晶粒取向聚集成的100nm-300nm颗粒所形成。微纳结构的SnO2:F薄膜通过对载流子的散射作用,有利于薄膜获得更为优异的低辐射性能。通过结构的调控,获得了雾度值达到~10.3%,方块电阻~11Ω·sq-1,辐射率低于0.16,可见光品质因数~10-3数量级,硬度值达到15.08GPa,杨氏模量达到206.93GPa的SnO2:F透明导电薄膜,该类薄膜在低辐射镀膜玻璃与薄膜太阳能电池领域具有很好的应用前景。 (2)采用浮法在线常压CVD法,以硅烷、乙烯、CO2作为前驱体,通过控制表面梯度氧化、薄膜沉积的反应温度和时间等参数调节纳米Si成核-生长过程,获得了大面积、均匀的纳米镶嵌SiCxOy薄膜,即由5nm大小的Si晶粒均匀镶嵌在Si-C-O无序网络中形成。这类薄膜被选择作为阻挡层的膜层材料。 (3)结合SnO2:F薄膜和SiCxOy薄膜的制备,在浮法生产线上,采用热分解CVD方法在锡槽内镀硅碳氧等多元化合物薄膜,然后采用MOCVD方法在退火窑内镀氧化锡等氧化物薄膜,制备得到了大面积、均匀的SnO2:F/SiCxOy复合镀膜玻璃。采用FIB-TEM手段,观察到了薄膜的三明治结构,其中SnO2:F膜层趋于柱状生长,具有很好的结晶性,SiCxOy阻挡层为多层纳米镶嵌结构,在膜层与膜层之间存在元素组分的过渡层。 (4)系统研究了阻挡层对SnO2:F薄膜结构与性能的影响,选择了SiCxOy和SixSnyO2作为阻挡层膜层材料进行研究和对比。具有阻挡层的SnO2:F薄膜具有更为均匀的表面形貌,颗粒分布在~200nm-300nm,且呈现更为明显的金字塔结构。阻挡层的引入弥补SnO2:F膜层与玻璃基体之间由于晶格不匹配而产生的大量孔洞,保证了膜层之间较好的结合力,改善了薄膜的力学性能。在结构上,阻挡层的引入提高了SnO2:F薄膜的结晶性,增强了其在(200)晶面的取向生长。在性能上,由于结构与形貌的改善,且阻挡了玻璃基体中的Na+、K+离子的扩散,具有阻挡层尤其是SiCxOy阻挡层的SnO2:F薄膜具有更为优异的光电学性能,电阻率下降到4.9×10-4,中远红外反射率提高到~85%,辐射率降低到0.16。因此,SiCxOy薄膜为一种理想的运用于FTO薄膜的阻挡层材料。 (5)对低辐射镀膜玻璃的稳定性进行了研究,发现当较长时间热处理且温度高于~580℃,将导致薄膜中微米尺寸的多面体颗粒分裂成纳米尺寸小颗粒,同时产生大量的颗粒界面,这些界面的产生使SnO2:F薄膜的霍尔迁移率和方块电阻增大,进而导致薄膜低辐射性能的劣化。定义了一个“H”因子来定量标定SnO2:F薄膜表面形貌的一致程度,并且将其与薄膜的性能联系起来,从而通过表面形貌的变化来考察薄膜的性能。发现低的“H”因子对应于低辐射性能较优异,方块电阻较小,对低辐射镀膜玻璃的工业化生产具有指导意义。 (6)模拟了玻璃钢化的过程,研究了原位和非原位钢化过程中SnO2:F低辐射镀膜玻璃结构与性能的变化。当钢化温度达到650℃,钢化时间大于10min,薄膜的方块电阻明显增大、中远红外反射率降低、低辐射性能明显变差。这是由于薄膜在空气中高温处理,氧气的化学吸附和F的向外扩散,导致了薄膜空位的减少,载流子浓度的降低。同时,薄膜内部界面的变化,通过界面散射导致薄膜霍尔迁移率的明显降低。因此,薄膜的载流子浓度和霍尔迁移率发生明显下降,最终导致薄膜光电性能的劣化。为了保证SnO2:F低辐射镀膜玻璃在钢化过程中保持较好的光电性能以及满足国家标准的低辐射率,钢化时间需控制在10min之内。 (7)以四异丙醇钛(TTIP)作为先驱体,采用常压MOCVD方法,通过控制镀膜温度、镀膜气体流量和速度,控制晶体成核-生长过程,在玻璃基体表面快速制备出大面积、均匀的TiO2薄膜,该类薄膜为一种锐钛矿相结构纳米薄膜,由尺寸小于10nm的TiO2纳米晶粒组成,表面均匀、致密,粗糙度小于10nm,从光学参数上分析可以分为致密层与表面粗糙层,具有较好的结晶性,晶态含量大于60%。 (8)通过调控TTIP浓度和前驱体总流量,系统研究了浮法在线制备参数对TiO2薄膜结构与形貌的影响,优化了锐钛矿相TiO2薄膜的结晶性,获得了表面致密、粗糙度小于5nm的纳米TiO2薄膜。同时,该类薄膜兼具优异的可见光透过率和亲水性,满足自清洁镀膜玻璃对采光和自清洁性能的要求,是一种较为理想的阳光易洁镀膜玻璃。
[Abstract]:Coated glass is the most important new type of building energy saving glass. It can not only keep the light transmittance of glass, but also effectively block the transfer of heat. It gives the special function of ordinary flat glass to meet the needs of energy saving, environmental protection, safety and decoration. According to the function, it can be divided into sunlight controlled coating glass, low radiation coated glass and self cleaning coating glass. Using the physical and chemical properties of different oxide materials, using floating on line chemical vapor deposition (CVD), through the control of the microstructure and properties of the oxide film, in order to realize the large area uniformity and high performance of the energy-saving coating glass, it has a broad application prospect in the energy saving area of the building. At the same time, the nano scale is carried out. The controllable preparation of the oxide film and the study of the relationship between the structure and properties of the preparation process are of great scientific significance for the development and application of this kind of materials.
In this paper, the research and application of energy saving coated glass for building is briefly summarized. The research status of the preparation and performance of transparent conductive and Ti02 films, represented by SnO2:F, is mainly summarized and reviewed, mainly for low radiation coated glass and self cleaning coated glass. The film system of large area and uniform stability in the preparation of chemical film is difficult, the structure matching of multilayer film and the lack of energy saving optimization technology are lacking. The material membrane system design of the new type energy saving glass, multi-layer matching and micro structure control technology are put forward. In this paper, the float process on-line gas phase deposition technology is used in this paper to make the micro surface of the glass for the first time. Nanoscale SnO2:F film, nanostructured SiCxOy film and nano Ti02 thin film are used to study the structure, uniformity, stability, optical properties, electrical properties and hydrophilic properties of the three types of thin films, and the structure and properties of low radiation coated glass under the temperature field are studied systematically. The main contents and results of this study are as follows:
(1) using the buoy on-line MOCVD method, using the single butyl tin chloride and three FLUOROACETIC acid as the precursor, through the reaction temperature, the membrane precursor flow and other technological parameters control, annealing treatment and other means to control the crystal nucleation and growth process, for the first time, the large surface, uniform, rutile and columnar growth of the micro nano structure SnO2:F thin on the surface of the glass matrix is made. The film, that is, is formed by the SnO2 grain oriented 100nm-300nm particles with the size of 5nm-10nm. The micro nano structure SnO2:F thin film is beneficial to the film to obtain more excellent low radiation performance through the scattering of the carrier. Through the structure regulation, the fog value is reached to 10.3%, the block resistance to 11 Omega SQ-1, the radiation rate. Under 0.16, the visible light quality factor is 10-3 orders of magnitude, the hardness value reaches 15.08GPa and the young's modulus reaches 206.93GPa SnO2:F transparent conductive film. This kind of film has a good application prospect in the field of low radiation coated glass and thin film solar cells.
(2) using the floating on-line atmospheric pressure CVD method, using silane, ethylene and CO2 as precursors, by controlling the surface gradient oxidation, the reaction temperature and time of the film deposition, the nanoscale Si nucleation and growth process are adjusted. A large area, uniform nanoscale SiCxOy film is obtained, that is, the Si grains of 5nm size are inlaid evenly in the Si-C-O disorder network. These films are selected as barrier coatings.
(3) combined with the preparation of SnO2:F film and SiCxOy film, on the float production line, the thin film of silicon carbon oxygen and other compounds was plated by thermal decomposition CVD method in the tin slot. Then MOCVD method was used to plating tin oxide thin film in the annealing kiln, and a large area and uniform SnO2:F/SiCxOy composite coating glass was prepared. FIB-TEM method was used. The sandwich structure of the film is observed, in which the SnO2:F film tends to columnar growth and has good crystallinity. The SiCxOy barrier layer is a multilayer nanomosaic structure, and there is a transition layer between the element components between the film and the film layer.
(4) the influence of barrier layer on the structure and properties of SnO2:F film is studied systematically. SiCxOy and SixSnyO2 are selected as barrier layer materials to study and compare. The SnO2:F films with barrier layer have more uniform surface morphology, the particles are distributed in 200nm-300nm, and the structure of Pyramid is more obvious. A large number of holes produced by the lattice mismatch between the SnO2:F film and the glass substrate ensure a better bonding force between the layers and improve the mechanical properties of the film. In structure, the introduction of the barrier layer improves the crystallinity of the SnO2:F film and enhances its orientation growth at (200) surface. In performance, due to structure and morphology The improvement has blocked the diffusion of Na+ and K+ ions in the glass matrix. The SnO2:F films with the barrier layer, especially the SiCxOy barrier layer, have better photoelectrical properties, the resistivity drops to 4.9 x 10-4, the mid far infrared reflectance is increased to 85%, the radiation rate is reduced to 0.16., and the SiCxOy film is an ideal resistance to the FTO film. Block material.
(5) the stability of low radiation coated glass is studied. It is found that when the heat treatment is longer and the temperature is higher than 580 C, the polyhedron particles in the thin film are divided into small size particles, and a large number of particle interfaces are produced. The production of these interfaces makes the Holzer mobility and the block resistance of the SnO2:F film increase. This leads to the deterioration of the low radiation performance of the film. A "H" factor is defined to calibrate the consistency of the surface morphology of the SnO2:F thin film, and it is associated with the properties of the film to investigate the performance of the film by the change of the surface morphology. It is found that the low "H" factor corresponds to the low radiation performance, and the block resistance is better. It is of little significance to the industrial production of low radiation coated glass.
(6) the process of glass tempering was simulated. The structure and properties of SnO2:F low radiation coated glass were studied in the process of in-situ and in situ steel. When the tempering temperature reached 650, the toughening time was greater than 10min, the block resistance of the film increased obviously, the albedo of the medium and far infrared decreased and the low radiation performance was obviously worse. This is due to the film in the air. The medium high temperature treatment, the chemical adsorption of oxygen and the outward diffusion of F lead to the decrease of the film vacancy and the decrease of the carrier concentration. At the same time, the change of the inner interface of the film leads to the apparent decrease of the mobility of the film Holzer by the interface scattering. Therefore, the carrier concentration and the mobility of the Holzer film are obviously decreased, and the film light is eventually led to the film light. In order to ensure the good photoelectric performance of the SnO2:F low radiation coated glass during the toughening process and meet the low radiation rate of the national standard, the tempering time should be controlled within the 10min.
(7) using four isopropanol titanium (TTIP) as a precursor, the normal pressure MOCVD method is used to control the nucleation and growth process of the crystal by controlling the temperature of the coating, the flow and velocity of the coating gas, and the large area and uniform TiO2 thin film is quickly prepared on the surface of the glass matrix. This kind of film is a kind of anatase phase structure nanomiltration, which is from the TiO2 nano size less than 10nm. The grain of rice is composed of uniform, compact surface, and the roughness is less than 10nm. From the optical parameters, it can be divided into dense layer and surface rough layer. It has good crystallinity and the crystalline content is greater than 60%..
(8) by controlling the TTIP concentration and the total flow rate of the precursor, the influence of the parameters on the structure and morphology of the TiO2 film was systematically studied. The crystallinity of the anatase TiO2 films was optimized. The nano TiO2 films with dense surface and less than 5nm were obtained. At the same time, the film has excellent visible light transmittance and hydrophilicity. Self cleaning coated glass is an ideal and easy to clean glass for sunlight.
【学位授予单位】:浙江大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:TB383.2;TQ171.72
【相似文献】
相关期刊论文 前10条
1 屈翠芬;高温氧化物超导体的发展现状[J];稀有金属材料与工程;1989年02期
2 钱逸泰,杨森,王继红,傅佩珍,陈祖耀;刚玉型结构氧化物薄膜的红外光谱研究(英文)[J];化学物理学报;1992年04期
3 李金隆,张鹰,魏贤华,邓新武,李言荣;SrTiO_3薄膜的自组装生长[J];硅酸盐学报;2004年09期
4 谢根生;;复杂氧化物陶瓷薄膜的溶胶—凝胶法制备方法[J];陶瓷科学与艺术;2005年05期
5 金鑫,姜继森;铁氧化物薄膜气敏材料的制备及性能研究评述[J];材料科学与工程;2002年03期
6 于光龙,朱建国,朱基亮,芦苇,肖定全;PbTiO_3薄膜生长的Monte Carlo模拟Ⅰ:模型与算法[J];功能材料;2005年10期
7 白云龙;孔祥华;何业东;赵海平;王向欣;胡守天;;电沉积涂层对取向硅钢性能的影响[J];武钢技术;2006年02期
8 任书芳;孟军虎;吕晋军;杨生荣;;M_(N+1)AX_N相及其复合材料的摩擦学性能研究进展[J];材料导报;2009年01期
9 邵景珍;董伟伟;陶汝华;邓赞红;方晓东;;柔性透明导电氧化物薄膜的制备及其应用[J];液晶与显示;2009年05期
10 杨宏训;黄妙良;韩鹏;姜奇伟;吴子豹;吴季怀;;染料敏化太阳能电池研究进展[J];材料导报;2006年09期
相关会议论文 前10条
1 王蕾;王凤平;潘礼庆;吴平;邱宏;刘还平;田跃;;表面薄氧化物薄膜层对坡莫合金薄膜磁电阻的影响[A];2003年纳米和表面科学与技术全国会议论文摘要集[C];2003年
2 李言荣;;BaTiO_3类介电薄膜在GaN上的外延生长和性能研究[A];第七届中国功能材料及其应用学术会议论文集(第7分册)[C];2010年
3 叶正平;常铮;雷晓东;孙晓明;;镍铝混合氧化物薄膜的制备及其对水中S_2O_3~(2-)的电吸附脱除性能[A];中国化工学会2011年年会暨第四届全国石油和化工行业节能节水减排技术论坛论文集[C];2011年
4 李红霞;刘宏;王继扬;崔红梅;;透明导电氧化物薄膜的研究进展[A];中国硅酸盐学会2003年学术年会论文摘要集[C];2003年
5 李逢彬;汪勇;;以溶胀介孔化的嵌段共聚物为模板用原子层沉积方法制备三维连通的介孔氧化物薄膜的研究[A];2011年全国高分子学术论文报告会论文摘要集[C];2011年
6 吕惠宾;陈正豪;周岳亮;杨国桢;;原子尺度控制氧化物薄膜的激光分子束外延和特性研究[A];新世纪 新机遇 新挑战——知识创新和高新技术产业发展(上册)[C];2001年
7 郭华聪;谢必正;;微波等离子体辅助多离子束反应共溅射装置[A];第九届全国核物理大会论文摘要汇编[C];1994年
8 王正铎;刘忠伟;桑利军;陈强;;有机硅单体离化掺杂制备硅铝二元氧化物薄膜[A];第十五届全国等离子体科学技术会议会议摘要集[C];2011年
9 张群;黄丽;沈杰;章壮健;华中一;;渠道火花烧蚀法及其应用[A];上海市真空学会成立20周年暨第九届学术年会论文集[C];2005年
10 杨国桢;吕惠宾;陈正豪;崔大复;周岳亮;朱湘东;;激光法制备原子尺度氧化物薄膜及其性能研究[A];第五届全国光学前沿问题研讨会论文摘要集[C];2001年
相关重要报纸文章 前9条
1 唐伟;Ⅱ型激光分子束外延设备整体性能国际先进[N];科技日报;2006年
2 李禾;吕惠宾:让分子无处遁形[N];科技日报;2004年
3 吴琼;谈谈陶瓷湿度传感器及其发展动向[N];北京电子报;2001年
4 牛五;用于LCD屏幕镀膜的新工艺[N];中国电脑教育报;2005年
5 张秀娴;日本汽车用表面处理钢板的开发[N];世界金属导报;2004年
6 王静 冀志江;加强基础研究研发抗菌陶瓷[N];中国建材报;2004年
7 王静;加强研发抗菌陶瓷[N];广东建设报;2004年
8 路云;抗菌陶瓷引领行业发展方向[N];中国高新技术产业导报;2004年
9 王威 黄达泉 北京奥博泰科技有限公司工程师;TCO光伏玻璃光电性能分析与检测[N];中国建材报;2010年
相关博士学位论文 前10条
1 彭蔚蔚;几种功能氧化物薄膜结构的同步辐射红外与太赫兹光谱研究[D];武汉理工大学;2012年
2 钱旭;几种锌基氧化物薄膜的原子层沉积制备、生长特性与性能表征[D];南京大学;2013年
3 熊飞;钙钛矿型氧化物薄膜的激光感生热电电压效应及光探测器应用[D];昆明理工大学;2008年
4 崔健;硅基纳米结构及功能氧化物薄膜的分子束外延生长与特性研究[D];复旦大学;2011年
5 陈聪;钙钛矿氧化物薄膜的电学及光学非线性特性研究[D];中国科学技术大学;2011年
6 杨铭;NiO基p型透明导电氧化物薄膜及其二极管的研究[D];复旦大学;2011年
7 宋淑梅;多层结构透明导电氧化物薄膜的制备及特性研究[D];山东大学;2010年
8 高倩;大面积氧化物薄膜材料的微纳结构可控制备与性能调控技术[D];浙江大学;2014年
9 曹恩思;氧化物薄膜的磁性及磁电耦合研究[D];山东大学;2012年
10 谭娜;Er/Yb共掺氧化物薄膜的光致荧光特性、结构特征及相关优化理论分析[D];大连理工大学;2006年
相关硕士学位论文 前10条
1 代超;钙钛矿氧化物薄膜中的应力释放机制研究[D];电子科技大学;2012年
2 赵静;铜及其氧化物薄膜的磁控溅射法制备及对AP的催化性能研究[D];南京理工大学;2012年
3 张佳旗;脉冲激光沉积制备氧化物薄膜及其光电性质的研究[D];吉林大学;2013年
4 刘宗宇;Mn的氧化物薄膜的制备与表征[D];大连交通大学;2013年
5 王越;ZnO基透明导电氧化物薄膜的光、电和力学性能研究[D];天津师范大学;2013年
6 冯佳涵;PMMA介质层铟锌氧化物薄膜晶体管的制备与研究[D];复旦大学;2011年
7 吴臣国;新型ZnO基透明导电氧化物薄膜的研究[D];复旦大学;2010年
8 周俊;非晶铟锌氧化物薄膜晶体管的研究[D];复旦大学;2010年
9 李宇维;利用磁控溅射制备铟镓锌氧化物薄膜晶体管的研究[D];北京交通大学;2012年
10 杨薇;新型复合TCO透明导电薄膜[D];辽宁科技大学;2012年
,本文编号:1953732
本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/1953732.html