自锁风电液压缸的研制
本文选题:风电液压缸 + 自锁装置 ; 参考:《济南大学》2017年硕士论文
【摘要】:液压缸是风电机组液压调桨系统的核心组成部件,其性能好坏直接影响整个液压调桨系统的可靠性和稳定性。本文结合国内外液压缸和液压锁的发展,依据风电机组调浆系统的工作要求,设计了一种新型液压缸-自锁风电液压缸。该类型液压缸拥有断电自锁装置和缓冲装置。利用结构创新设计,液压缸断电自锁装置既可以实现油缸在负载情况下任意位置的可靠锁止,又可以保证工作过程中的可靠解锁;缓冲装置可以保证风机桨叶在规定时间内制动的情况下降低其承受的载荷,避免桨叶损坏。本文首先设计了自锁风电液压缸的结构并进行了分析,进而通过理论分析、仿真分析和结构优化,验证液压缸的性能。具体研究内容如下:根据设计要求,首先是对自锁风电液压缸的结构设计。通过理论计算确定缸筒壁厚和外径等主要参数,并利用有限元仿真分析的方法对结构参数进行强度、刚度校核;在结构参数优化分析的基础上,完成了自锁风电液压缸活塞结构、自锁装置以及缓冲装置的设计;利用SolidWorks软件建立自锁风电液压缸的实体模型,为后续性能分析和优化奠定基础。其次是自锁风电液压缸的性能分析。研究液压缸在极端轴向载荷(极端推载荷和极端拉载荷)、径向载荷的作用下液压缸的变形及各部件的应力分布规律,得到液压缸的极限承载性能。再次进行断电自锁装置结构参数分析及优化。利用自锁装置自锁状态下的受力分析,得到夹紧力的理论计算公式,进一步通过MATLAB软件分析自锁装置结构参数对夹紧力的影响并进行参数优化;利用ANSYS Workbench软件对缸体关键部件进行刚度、强度分析,检验其可靠性;利用ANSY Workbench仿真分析自锁装置的夹紧力及其影响因素,验证自锁装置锁紧的可靠性。最后研究液压缓冲装置性能。主要是缓冲装置性能的理论研究,包括理论分析模型建立、缓冲特性曲线分析以及对缓冲过程影响的理论分析,为仿真分析提供前提条件;通过Fluent软件对缓冲装置性能仿真研究,观察缓冲过程中的压力变化以及研究了结构参数对缓冲性能的影响,为缓冲装置的设计和选型提供指导。
[Abstract]:Hydraulic cylinder is the core component of hydraulic governing system of wind turbine. Its performance directly affects the reliability and stability of the whole hydraulic governing system. Based on the development of hydraulic cylinder and lock at home and abroad and according to the working requirements of sizing system of wind turbine, a new type of hydraulic cylinder, self-locking wind power hydraulic cylinder, is designed in this paper. This type of hydraulic cylinder has power-off self-locking device and buffer device. With the innovative design of the structure, the self-locking device of the hydraulic cylinder can not only realize the reliable locking of the cylinder at any position under load, but also guarantee the reliable unlock in the working process. The buffer device can ensure that the fan blade can reduce the load and avoid the damage of the blade under the condition of braking within the specified time. In this paper, the structure of the self-locking wind power cylinder is designed and analyzed, and the performance of the hydraulic cylinder is verified by theoretical analysis, simulation analysis and structural optimization. The main contents are as follows: according to the design requirements, the structure of self-locking wind power cylinder is first designed. The main parameters such as cylinder wall thickness and external diameter are determined by theoretical calculation, and the structural parameters are checked by finite element simulation analysis. The piston structure, self-locking device and buffer device of self-locking wind power hydraulic cylinder are designed, and the solid model of self-locking wind power cylinder is established by SolidWorks software, which lays a foundation for subsequent performance analysis and optimization. Secondly, the performance analysis of self-locking wind power hydraulic cylinder. The deformation and stress distribution of hydraulic cylinder under extreme axial load (extreme pushing load and extreme pull load) and radial load are studied, and the ultimate bearing capacity of hydraulic cylinder is obtained. The analysis and optimization of the structure parameters of the self-locking device are carried out again. The theoretical calculation formula of clamping force is obtained by using the force analysis of self-locking device under self-locking state. Further, the influence of structural parameters of self-locking device on clamping force is analyzed by MATLAB software and the parameters are optimized. Using ANSYS Workbench software to analyze the stiffness, strength and reliability of the key parts of the cylinder block, and using ANSY Workbench to simulate and analyze the clamping force of the self-locking device and its influencing factors, to verify the reliability of the locking device. Finally, the performance of hydraulic buffer device is studied. The theoretical research on the performance of the buffer device includes the establishment of the theoretical analysis model, the analysis of the buffering characteristic curve and the theoretical analysis of the influence on the buffer process, which provides the precondition for the simulation analysis. Through the simulation of the performance of the buffer device by fluent software, the pressure change during the buffer process and the influence of the structure parameters on the buffer performance are observed, which provides guidance for the design and selection of the buffer device.
【学位授予单位】:济南大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TH137.51;TM315
【参考文献】
相关期刊论文 前10条
1 刘明生;郑攀;;基于运行可靠性的车载液压缸结构设计[J];机电工程技术;2015年04期
2 生敏;李永奇;孙肇岩;王丽;;浅谈汽车起重机水平液压缸常见故障及解决措施[J];液压气动与密封;2013年09期
3 张学周;;新型自锁液压缸夹紧结构[J];金属加工(冷加工);2013年09期
4 刘庆教;李永奇;樊耀华;罗海霞;;测试与传感技术在超高压液压缸设计中的应用[J];液压与气动;2012年01期
5 刘俊;林贝清;;电控全液压转向系统中自锁对中液压缸的结构设计[J];液压与气动;2011年10期
6 葛如海;杨工作;吴云腾;朱文婷;;基于三维动网格技术的气缸动态响应特性研究[J];机床与液压;2011年17期
7 贾福强;高英杰;杨育林;崔筱;;风力发电中液压系统的应用概述[J];液压气动与密封;2010年08期
8 申宽育;;中国的风能资源与风力发电[J];西北水电;2010年01期
9 李硕卫;张国贤;;现代液压技术的发展现状[J];机械工程师;2009年02期
10 张卫华;李承颖;;液压缸的一种缓冲装置[J];液压与气动;2008年09期
相关博士学位论文 前1条
1 薛驰;基于专利知识的机械产品创新设计方法研究[D];浙江大学;2013年
相关硕士学位论文 前4条
1 沈洋;基于动网格技术的高速液压缸动态过程流场数值模拟[D];武汉科技大学;2013年
2 邹建华;新型自锁式液压缸的研制[D];厦门大学;2008年
3 席川;基于无杆活塞缸的液压—机械复合传动装置研究[D];苏州大学;2007年
4 刘波;液压缸缓冲结构和缓冲过程的研究[D];浙江大学;2004年
,本文编号:2057338
本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/2057338.html