当前位置:主页 > 管理论文 > 工程管理论文 >

CdTe薄膜的电化学沉积、结构与性能研究

发布时间:2018-07-05 16:22

  本文选题:CdTe薄膜 + 太阳能电池 ; 参考:《济南大学》2017年硕士论文


【摘要】:碲化镉(CdTe)薄膜太阳能电池是一种以p型CdTe和n型CdS所组成的异质结为基础的薄膜太阳能电池。CdTe层作为光吸收层,其禁带宽度为1.46 eV,光吸收率高,是一种典型的II-VI族直接带隙半导体。CdTe薄膜太阳能电池具有理论转换效率高,电池性能稳定,制备工艺简单等诸多优点,备受国内外关注。CdTe薄膜的制备方法有很多种,包括近空间升华法,气相输运法,磁控溅射法和电化学沉积法等等。其中,电化学沉积法因其成本低廉,工艺简单,易于大面积制备等优点受到了广大国内外科研人员的青睐。CdS层作为CdTe薄膜太阳能电池的窗口层,CdS中Cl浓度会影响电池中缓冲层的形成,化学浴沉积过程中Cl在CdS薄膜中的引入必将影响电池的性能。Cl掺杂CdTe是形成高效电池的必备条件。在电化学法制备的CdTe薄膜电池中,Cl通常通过电解质溶液在电沉积过程中被引入CdTe薄膜中,以提高薄膜质量和电池性能,但其作用机理尚不清晰。目前电化学沉积的CdTe薄膜的主要问题是晶粒小,晶界多,已有的退火方式会造成薄膜中气孔较多,电池的光生载流子复合严重,电池转换效率低。因此,需要优化电化学沉积CdTe薄膜的退火工艺来提高CdTe薄膜的结构和电池性能。同时,电化学沉积的CdTe薄膜的晶体结构和厚度的特殊性,也需要与其相适应的背接触层沉积和退火条件以提高电池性能。本文重点就以上这些问题展开研究,主要研究内容如下:(1)研究了CdS薄膜中Cl残留对薄膜结构性能及组装电池性能的影响。研究采用醋酸镉与氯化镉两种溶液体系化学浴沉积CdS薄膜。研究发现,两种体系中沉积的CdS薄膜均为六方相结构的n型半导体。退火后,CdCl2体系中制备的CdS薄膜晶粒尺寸要大于Cd(CH3COO)2体系中制备的CdS,其表面平整致密。所有CdS薄膜热处理后的禁带宽度都有所降低,但相比而言CdCl2体系中制备的CdS薄膜的禁带宽度更大。从Mott-Schottky曲线计算的载流子浓度发现,退火会降低CdS薄膜的载流子浓度,但随着更多Cl的引入载流子浓度又会增加。结果表明,CdS薄膜中Cl的残留将导致S空位及膜内应力的减少。通过组装的电池性能发现,采用CdCl2体系制备的CdS薄膜组装的电池性能更优。(2)通过对比含Cl与否的电解质溶液所沉积CdTe薄膜的结构性能,研究了Cl在电解质溶液中的引入对CdTe薄膜的电沉积过程,结构性能及所组装电池性能的影响。研究发现,含Cl电解质溶液中沉积出的CdTe薄膜的结构性能均优于不含Cl电解质溶液中沉积出的薄膜,这要归因于薄膜电导率的提高,进而减少了薄膜沉积过程中反应界面处的电位降,使得薄膜沉积以生长为主,从而获得了优异的初始结晶质量。此外,在不含Cl的电解质溶液中,提高沉积电位同样可获得良好的结晶质量。退火后,含Cl溶液中沉积的CdTe薄膜膜内Cl的残留使得所组装电池的性能得到了提高。(3)提出了一种针对电化学沉积法制备CdTe薄膜太阳能电池的新型退火工艺。与传统退火工艺相比,在Cl激活处理前,一个额外的预退火工艺被引入使得在Cl激活处理前CdTe薄膜可以获得良好的结晶性,最小化晶界的存在。因此,在第二步的Cl激活处理中,适度抑制了Cl沿着晶界渗入CdTe薄膜,并因此获得了较传统一步法更优良的CdS/CdTe界面。界面处孔洞的减少,也使得所组装的电池获得了更高的量子效率及光电转换效率。两步法退火工艺为进一步提高电化学沉积法制备CdTe薄膜太阳能电池的性能提供了一个新的思路。(4)为了优化电化学沉积法制备CdTe薄膜太阳能电池中背接触层的制备工艺,对不同酸腐时间,Cu层厚度及退火温度处理下的电池性能进行了分析,发现当酸腐时间为10 s,Cu层厚度为8 nm,退火温度为200℃的时候,所获电池性能最佳。这是由于对CdTe层进行适时的蚀刻处理可以去除表面的高阻氧化层,并形成一层富Te层。在富Te层表面,制备一层合适厚度的Cu层,经适宜温度退火后生成一个CuxTe层,形成重掺杂层,降低背接触势垒,促进了CdTe与背电极之间形成了欧姆接触,从而最终提高了电池的性能。
[Abstract]:Cadmium telluride (CdTe) thin film solar cell is a kind of thin film solar cell.CdTe layer based on P type CdTe and N CdS as the optical absorption layer. The band gap is 1.46 eV, and the optical absorption rate is high. It is a typical II-VI family direct band gap semiconductor.CdTe thin film solar cell with high theoretical conversion efficiency and battery property. It has many advantages, such as stability, simple preparation technology and so on. There are many kinds of preparation methods concerned with.CdTe films at home and abroad, including near space sublimation, gas phase transport, magnetron sputtering and electrochemical deposition, etc., in which the electrochemical deposition has many advantages, such as low cost, simple process and easy to make large area. The researchers favor the.CdS layer as the window layer of the CdTe thin film solar cell, and the Cl concentration in CdS will affect the formation of the buffer layer in the battery. The introduction of Cl in the CdS film during the chemical bath deposition will certainly affect the performance of the battery and the.Cl doping CdTe is a necessary condition for the formation of high efficiency batteries. In the CdTe thin film battery prepared by the electrochemical method, Cl passes. The electrolyte solution is often introduced into the CdTe film in the electrodeposition process to improve the film quality and battery performance, but its mechanism is not clear. The main problem of the electrochemical deposition of CdTe film is that the grain size is small and the grain boundary is large. The existing annealing methods will cause more pores in the film, and the battery's optical carrier recombination is serious. The efficiency of battery conversion is low. Therefore, it is necessary to optimize the annealing process of Electrodeposited CdTe films to improve the structure and battery performance of the CdTe thin films. At the same time, the crystal structure and thickness of the electrodeposited CdTe films also need to be deposited and retreated to improve the battery performance. The main research contents are as follows: (1) the effects of Cl residue on the structural properties and the performance of the assembled battery in CdS films are studied. The study of the deposition of CdS films by two solution system chemical bath with cadmium acetate and cadmium chloride shows that the CdS films deposited in the two systems are all N type semiconductors with the structure of six square phase. After annealing, the grain size of the CdS film prepared in the CdCl2 system is larger than the CdS produced in the Cd (CH3COO) 2 system. Its surface is smooth and compact. The band gap of all CdS films is reduced after heat treatment, but the forbidden band width of the CdS film prepared in the CdCl2 system is larger. The carrier concentration calculated from the Mott-Schottky curve is found, Annealing will reduce the carrier concentration of the CdS film, but as more Cl is introduced, the carrier concentration will increase. The results show that the residual Cl in the CdS film will lead to the decrease of the S vacancy and the internal stress in the membrane. The battery performance of the CdCl2 system is better to be assembled by the assembly of the battery. (2) whether the Cl is compared or not by comparison. The structure properties of CdTe films deposited by electrolyte solution were studied. The effects of the introduction of Cl in electrolyte solution on the electrodeposition, structural properties and the performance of the assembled cells were studied. It was found that the structure properties of the CdTe films deposited in the Cl electrolyte solution were better than those in the Cl electrolyte solution without the electrolyte solution. This is attributable to the increase of the conductivity of the film, thus reducing the potential drop at the reaction interface during the deposition of the film, making the deposition of the film dominated by growth, thus obtaining excellent initial crystallization quality. In addition, a good crystalline quality can be obtained by increasing the deposition potential in an electrolyte solution without Cl. After annealing, the solution contains a Cl solution. The residue of Cl in the deposited CdTe film film improves the performance of the assembled cells. (3) a new annealing process is proposed for the preparation of CdTe thin film solar cells by electrochemical deposition. Compared with the traditional annealing process, an additional pre annealing process is introduced before the Cl activation process to make CdTe before the Cl activation process. The thin film can obtain good crystallinity and minimize the existence of grain boundaries. Therefore, in the second step Cl activation treatment, Cl appropriately inhibits the infiltration of the CdTe film along the grain boundary, and thus obtains a better CdS/CdTe interface than the uniform gait. The decrease of the pores at the interface also makes the assembled cells obtain higher quantum efficiency and light. The two step annealing process provides a new idea to further improve the performance of CdTe thin film solar cells by electrochemical deposition. (4) in order to optimize the preparation process of the back contact layer in the CdTe thin film solar cell by electrochemical deposition, the electric power of different acid decay time, Cu layer thickness and annealing temperature treatment The performance of the pool is analyzed. It is found that when the acid time is 10 s, the thickness of the Cu layer is 8 nm and the annealing temperature is 200 c, the performance of the battery is the best. This is because the etching treatment of the CdTe layer can remove the high resistance oxidation layer on the surface and form a layer of rich Te layer. The suitable thickness of the Cu layer on the surface of the rich Te layer is suitable. After temperature annealing, a CuxTe layer is generated to form a heavy doped layer, which reduces the potential barrier of the back contact, and promotes the formation of ohm contact between the CdTe and the back electrode, thus ultimately improving the performance of the battery.
【学位授予单位】:济南大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TB383.2;TM914.4

【相似文献】

相关期刊论文 前10条

1 王龙;黄整;麻焕峰;强伟荣;潘敏;;First Principle Calculation for the Electronic Bands and Absorption of CdTe_(1-x)Sb_x[J];Journal of Southwest Jiaotong University(English Edition);2010年04期

2 王钊;黎兵;郑旭;谢婧;黄征;刘才;冯良桓;郑家贵;;Deep level transient spectroscopy investigation of deep levels in CdS/CdTe thin film solar cells with Te:Cu back contact[J];Chinese Physics B;2010年02期

3 高文明,贾焕义;CdTe在高γ剂量率探测中的应用[J];核电子学与探测技术;1993年06期

4 郑华靖;张静全;;Preparation and Properties of CdTe Polycrystalline Films for Solar Cells[J];Journal of Wuhan University of Technology(Materials Science Edition);2006年03期

5 夏庚培;郑家贵;冯良桓;蔡伟;蔡亚平;黎兵;李卫;张静全;武莉莉;雷智;曾广根;;CdTe多晶薄膜制备及后处理对CdS/CdTe界面的影响[J];真空科学与技术学报;2007年02期

6 ;Effect of ZnTe/ZnTe:Cu complex back-contact on device characteristics of CdTe solar cells[J];Science in China(Series E:Technological Sciences);2007年02期

7 曾广根;黎兵;郑家贵;李愿杰;张静全;李卫;雷智;武莉莉;蔡亚平;冯良桓;;近空间升华法氧气氛下CdTe源的性能[J];半导体学报;2008年01期

8 李峥;汪勇先;张国欣;韩彦江;;Luminescent properties dependence of water-soluble CdTe quantum dots on stabilizing agents and reaction time[J];Journal of Central South University of Technology;2010年06期

9 雷智;冯良桓;曾广根;李卫;张静全;武莉莉;王文武;;Influence of Cu_xS back contact on CdTe thin film solar cells[J];Journal of Semiconductors;2013年01期

10 李锦,郑毓峰,戴康,徐金宝,陈树义;近距离升华制备CdTe掺Te薄膜的结构与电性能研究[J];无机材料学报;2003年01期

相关会议论文 前10条

1 周咏东;方家熊;靳秀芳;王继元;汤定元;;CdTe的溅射生长及其对n-HgCdTe光导器件的表面钝化[A];第三届中国功能材料及其应用学术会议论文集[C];1998年

2 彭娟娟;王雷;刘正文;何佑秋;;光谱法研究CdTe量子点与糜蛋白酶的相互作用(英文)[A];第六届全国化学生物学学术会议论文摘要集[C];2009年

3 郭轶;孙卓;徐跃;徐力;;CdTe荧光量子点标记碱性蛋白酶[A];第十一次中国生物物理学术大会暨第九届全国会员代表大会摘要集[C];2009年

4 陈国良;周剑章;林仲华;张彦;韩雅娟;;碱性体系中CdTe电沉积和剥离过程的电化学性能研究[A];第十三次全国电化学会议论文摘要集(下集)[C];2005年

5 ;pH-sensitive Photoluminescence for Aqueous Thiol-capped CdTe Nanocrystals[A];2011年全国高分子学术论文报告会论文摘要集[C];2011年

6 ;Homogeneous Fluorescence-Based Immunoassay via Inner Filter Effect of Gold Nanoparticles on Fluorescence of CdTe Quantum Dots[A];中国化学会第28届学术年会第9分会场摘要集[C];2012年

7 张虎成;李方方;杜可禄;李艳君;刘志刚;王键吉;;甘油-水混合溶剂中离子液体对纳米结构CdTe的调控合成[A];河南省化学会2012年学术年会论文摘要集[C];2012年

8 张虎成;李方方;杜可禄;李艳君;刘志刚;王键吉;;功能化离子液体对CdTe发光性能的调控作用研究[A];中国化学会成立80周年第十六届全国化学热力学和热分析学术会议论文集[C];2012年

9 李萍萍;刘绍璞;刘忠芳;何佑秋;;GSH-CdTe量子点作探针荧光法检测原卟啉钠[A];第十七届全国分子光谱学学术会议论文集[C];2012年

10 李银萍;李保新;;体系中包被试剂对CdTe QDs荧光的增强作用[A];中国化学会第十届全国发光分析学术研讨会论文集[C];2011年

相关重要报纸文章 前1条

1 吕军锋;薄膜表面极性火焰处理技术的原理及其特点[N];中国包装报;2009年

相关博士学位论文 前10条

1 李军;发光CdTe纳米晶的合成、组装、复合及应用[D];吉林大学;2004年

2 余雪娇;CdTe、Zn_xCd_(1-x)Se和碳量子点的合成及其应用研究[D];北京化工大学;2014年

3 王红玉;表面等离激元增强的CdTe量子点荧光特性研究[D];南京大学;2016年

4 魏芳弟;基于量子点表面分子印迹技术的多通道快速测定神经递质[D];南京医科大学;2016年

5 汤凯;基于氧化物衬底的CdTe单晶薄膜的分子束外延制备及外延机制[D];华东师范大学;2016年

6 Hafiz Tariq Masood;不同背接触结构高转化效率CdTe薄膜太阳能电池的制备与研究[D];中国科学技术大学;2017年

7 赵奎;水溶性CdTe纳米晶的合成及表面性质研究[D];吉林大学;2007年

8 薛梅;基于水溶性CdTe纳米晶功能荧光探针的设计、合成及分析应用[D];山东师范大学;2012年

9 吕斌;CdTe薄膜电池器件制备及相关材料研究[D];南京大学;2012年

10 李倩;电化学沉积法制备CdTe/CdS薄膜太阳能电池及性能研究[D];吉林大学;2014年

相关硕士学位论文 前10条

1 冯凯;CdTe薄膜的电化学沉积、结构与性能研究[D];济南大学;2017年

2 张颖;聚乙烯亚胺功能化的生物材料去除CdTe量子点和酸性品红的研究[D];西南大学;2015年

3 肖臻;巯基乙醇修饰的CdTe量子点的制备及其改性研究[D];云南民族大学;2015年

4 梁万军;荧光、共振瑞利散射光谱法研究CdTe量子点与抗生素和DNA的相互作用及分析应用[D];西南大学;2015年

5 王书源;水溶性CdTe量子点的制备及用于Cu~(2+)的检测[D];中南林业科技大学;2015年

6 张婷;离子液体辅助合成的CdTe纳米晶对离子/分子响应的选择性[D];河南师范大学;2015年

7 周yN璇;纳米金和CdTe量子点体系作用机制研究[D];河南师范大学;2015年

8 郭宝库;CdTe/CdS异质结的电化学制备及其光电性能研究[D];北京化工大学;2015年

9 李荣霞;蛋白包覆的作用模式对CdTe量子点光稳定性及细胞毒性的影响[D];山西大学;2014年

10 黄艳妮;CdTe量子点复合材料的制备及其荧光性能研究[D];北京化工大学;2015年



本文编号:2100883

资料下载
论文发表

本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/2100883.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户5a177***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com