物料限制下面向订单的动态生产调度问题研究
[Abstract]:In the face of the global manufacturing industry developing towards the direction of intelligent manufacturing, the trend of arranging production according to the customer's demand is more and more obvious in today's market, the customer's demand is more and more diversified and individualized, in order to meet the customer's demand, Enterprises gradually change from the traditional inventory-oriented production mode to the order-oriented production mode. In this context, the research of this paper takes into account the constraints of material constraints, the supply of materials and production links coordinated scheduling, and because the timely delivery of orders is an important service standard. Therefore, this paper studies the dynamic production scheduling problem with the objective function of minimizing the total tardiness. The core manufacturer requires that all incoming orders be received, that a material requirement signal be sent to the warehouse according to the order, and then an order notification be sent to the upstream supplier based on the stock of the material. Finally, according to the supply of materials to formulate production plans. Because of the randomness of orders, the production scheduling scheme needs to change with the arrival of new orders, so the problem is a typical dynamic scheduling problem. When the dynamic event (accepting new order) occurs, the unfinished product and the new order product are rescheduled, and a scheduling scheme is re-generated according to the current processing state. Firstly, by analyzing and studying the problem, putting forward the reasonable hypothesis of the problem, putting forward the constraint condition according to the limitation of the problem itself, and explaining the meaning of the mathematical constraint, the mixed integer programming model is established with the objective function of the total delay minimization as the objective function. Then, two improved universal heuristic algorithms, modified Artificial immune system algorithm (mais) and multiple variable neighborhood search algorithm (MVNS), are proposed. On the basis of understanding the design idea and basic principle of artificial immune system (AIS) algorithm, the advantages of natural immune system (NIS) memory processing information are derived, and the immune system algorithm is improved. The structure of the improved artificial immune system is composed of V (D) J gene recombination, somatic hypermutation, type conversion and secondary immune response. The algorithm consists of initialization process, four kinds of neighborhood structure, disturbance process, neighborhood transformation and reinforcement process, in which neighborhood transformation process can automatically modify neighborhood structure to jump out of the space of local optimal solution. The reinforcement structure accelerates the convergence speed of the algorithm, and the perturbation mechanism makes it break free from the continuous condition that the local optimal solution is not improved to find a better feasible solution. Finally, the performance of various algorithms to solve the problem is analyzed and evaluated by computer simulation experiments. Random combinatorial problem parameters generate 240 experimental problems. C language programming algorithm is used to compare the performance of the algorithm by relative percentage deviation, operation time, standard deviation and hypothesis test. It is verified that the improved artificial immune system algorithm and the variable neighborhood search algorithm can solve the problem in a short time and obtain the approximate optimal solution.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TB497
【相似文献】
相关期刊论文 前10条
1 王伟玲,马正元,王玉生;生产调度问题研究的动态与趋势[J];组合机床与自动化加工技术;2005年05期
2 马正元,王伟玲,王玉生;生产调度问题的系统研究[J];成组技术与生产现代化;2005年01期
3 熊锐,吴澄;车间生产调度问题的技术现状与发展趋势[J];清华大学学报(自然科学版);1998年10期
4 尤军,李少远;生产调度问题的模糊满意优化[J];上海交通大学学报;2003年11期
5 丁然;李歧强;郭庆强;刘圆圆;;不确定条件下生产调度问题的三阶段决策方法[J];控制理论与应用;2008年06期
6 李琪;冯欣;张永振;;生产调度问题研究平台的设计与开发[J];河南科技大学学报(自然科学版);2008年05期
7 张佐,谢东,吴秋峰,韩曾晋;一般生产调度问题的统一结构[J];清华大学学报(自然科学版);1997年04期
8 张毕西;谢祥添;;非流水型生产调度问题的研究[J];机械制造;2007年04期
9 金庭枝,王德兴,武华,周才堂;生产调度问题的新算法[J];武汉汽车工业大学学报;2000年06期
10 吕文阁;刘志勇;成思源;骆少明;张湘伟;;基于竞选算法的生产调度问题的研究[J];机床与液压;2009年10期
相关会议论文 前1条
1 李郝林;;DNA遗传信息模型在生产调度问题中的应用[A];第二届全国信息获取与处理学术会议论文集[C];2004年
相关博士学位论文 前8条
1 何小娟;分布估计算法及其在生产调度问题中的应用研究[D];兰州理工大学;2011年
2 宋存利;生产调度问题及其智能优化算法研究[D];大连理工大学;2011年
3 周艳平;基于博弈理论的多目标生产调度问题研究[D];华东理工大学;2013年
4 郭盈;实际复杂生产调度问题的新模型与算法研究[D];合肥工业大学;2012年
5 高守玮;一类Flow shop生产调度问题及其优化方法之分析与研究[D];上海交通大学;2007年
6 赵小强;炼厂生产调度问题研究[D];浙江大学;2005年
7 徐新黎;生产调度问题的智能优化方法研究及应用[D];浙江工业大学;2009年
8 王林平;应用齐套概念的离散制造业生产调度问题研究[D];大连理工大学;2009年
相关硕士学位论文 前10条
1 王成龙;基于数据挖掘技术的生产调度问题研究[D];浙江大学;2015年
2 历莉;基于混合离散微粒群算法求解复杂并行机生产调度问题[D];昆明理工大学;2015年
3 马力;基于粒子群算法的多产品批处理生产调度问题研究[D];江西理工大学;2015年
4 宋代立;电路印刷板组装车间生产调度方法研究[D];上海交通大学;2013年
5 时培花;考虑原材料的冷链型企业生产调度问题研究[D];合肥工业大学;2015年
6 张璐;发泡车间生产调度问题的研究[D];广东工业大学;2016年
7 张晓静;辐照企业智能生产调度系统的研究与开发[D];北京交通大学;2016年
8 刘絮绯;物料限制下面向订单的动态生产调度问题研究[D];吉林大学;2017年
9 徐建国;多资源生产调度问题的分析建模[D];合肥工业大学;2008年
10 陈伟;考虑模具约束的生产调度问题研究[D];合肥工业大学;2013年
,本文编号:2122885
本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/2122885.html