基于改进核主元分析的过程监测方法研究
[Abstract]:With the increasing scale and complexity of modern industrial process, how to ensure the safety of process operation and improve the quality of products are two urgent problems to be solved by industrial production enterprises. Process monitoring technology is an effective method to solve these two problems. However, due to the complexity and volatility of actual industrial processes, it is very difficult to establish and apply accurate process models, and the traditional theories and methods based on qualitative and quantitative models are limited to a certain extent. Due to the development of intelligent instruments and computer technology in industrial process applications, a large number of high-dimensional and strongly correlated process state data are collected and stored, it is difficult to remove redundancy and interference to extract useful information. As a method to deal with multivariate correlation, multivariate statistical process monitoring technology has been continuously concerned and developed in the past ten years. On the basis of previous work, this paper aims at the problem of parameter drift caused by equipment aging, process drift and sensor measurement error in nonlinear industrial process. The following research works have been done: (1) aiming at the problem of process samples increasing gradually or parameter drift, this paper combines the kernel principal component analysis method based on sliding window mechanism and the exponential weighted kernel principal component analysis method. An adaptive kernel principal component analysis method is proposed. When a new sample is collected, the sliding window is used to determine whether the sample satisfies the condition of model updating. If the model updating condition is satisfied, the exponential weighted kernel principal component analysis method is used to update the model, whereas the model update is not carried out until the next normal sample is collected. The method is used to monitor the working process of the fused magnesium furnace and the simulation results verify the feasibility of the method. (2) the traditional kernel principal component analysis method is based on the assumption that the sample does not contain the inferior points, but the actual data collected in the industrial process often contain the inferior points. Even if it is mapped to the feature space, the problem of inferior points still exists, which has a great influence on the model and results in inaccurate process monitoring. In order to solve this problem, an improved kernel principal component analysis method is proposed in this paper, which defines the loss function of the feature space in the sense of minimum reconstruction error, and solves the problem by using the penalty factor iterative kernel principal component analysis to eliminate the influence of inferior points. Moreover, the kernel matrix updating method based on forgetting factor is used to ensure that the model is more consistent with the change of process, and the reconstruction error is first calculated for the new sample to determine whether it is a bad point, and if it is a bad point, the reconstruction is later updated. If not, update the model directly. The simulation results show that the improved kernel principal component analysis method can reduce the influence of inferior points on the model and improve the accuracy of the model.
【学位授予单位】:东北大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TB49
【相似文献】
相关期刊论文 前10条
1 唐勇波;桂卫华;彭涛;;代价敏感核主元分析及其在故障诊断中的应用[J];中南大学学报(自然科学版);2013年06期
2 李学军;李平;蒋玲莉;;类均值核主元分析法及在故障诊断中的应用[J];机械工程学报;2014年03期
3 刘世成;王海清;李平;;基于多向核主元分析的青霉素生产过程在线监测[J];浙江大学学报(工学版);2007年02期
4 邓晓刚;田学民;;基于免疫核主元分析的故障诊断方法[J];清华大学学报(自然科学版);2008年S2期
5 赵小强;杨武;薛永飞;;可变窗自适应核主元分析的化工过程故障诊断算法[J];东南大学学报(自然科学版);2013年S1期
6 李学军;杨大炼;郭灯塔;蒋玲莉;;基于基座多传感核主元分析的故障诊断[J];仪器仪表学报;2011年07期
7 毕小龙;王洪跃;司风琪;徐治皋;;基于核主元分析的传感器故障检测[J];动力工程;2007年04期
8 郑育平;张丽萍;;基于核主元分析的湿法烟气脱硫系统的故障诊断[J];福州大学学报(自然科学版);2013年03期
9 姜万录;吴胜强;刘思远;;指数加权动态核主元分析法及其在故障诊断中应用[J];机械工程学报;2011年03期
10 王涛;李艾华;高运广;王旭平;蔡艳平;;一种并行遗传优化核主元分析算法[J];噪声与振动控制;2013年02期
相关会议论文 前6条
1 赵小强;杨武;薛永飞;;可变窗自适应核主元分析的化工过程故障诊断算法[A];2013年中国智能自动化学术会议论文集(第三分册)[C];2013年
2 钟秉翔;;一种基于核主元分析的精简化建模方法[A];中国自动化学会控制理论专业委员会C卷[C];2011年
3 甘俊英;张有为;;核主元分析特征提取法的研究[A];第十一届全国信号处理学术年会(CCSP-2003)论文集[C];2003年
4 崔桂梅;鄢常亮;马祥;;基于核主元分析和支持向量机的高炉向凉、向热故障诊断[A];中国计量协会冶金分会2010年会论文集[C];2010年
5 汪爱娟;张端金;介晓婧;;基于核主元分析的故障检测[A];2013年中国智能自动化学术会议论文集(第四分册)[C];2013年
6 倪国文;刘爱伦;;基于核主元分析的非线性故障检测研究[A];2009中国仪器仪表与测控技术大会论文集[C];2009年
相关博士学位论文 前1条
1 张敏;复杂生产过程质量控制的智能方法研究[D];西南交通大学;2013年
相关硕士学位论文 前10条
1 李璐;石油钻井过程井漏异常的预警技术研究[D];郑州大学;2015年
2 张薇;基于改进核主元分析的过程监测方法研究[D];东北大学;2014年
3 胡志勇;基于核主元分析及扩展方法的过程监测[D];东北大学;2011年
4 滕永懂;基于核主元分析的动态过程监测[D];东北大学;2010年
5 李蓉一;基于核主元分析的故障检测与诊断研究[D];南京师范大学;2011年
6 杨武;基于改进核主元分析的化工过程故障诊断研究[D];兰州理工大学;2013年
7 冯玮;基于核主元分析的过程监测方法研究[D];东北大学;2013年
8 何巍;基于多块核主元分析和概率符号有向图的故障诊断方法研究[D];中南大学;2013年
9 石晋明;基于粗糙集与核主元分析方法的柴油机故障检测与诊断[D];中北大学;2014年
10 高金凤;基于数据驱动的非线性过程故障诊断方法研究[D];沈阳理工大学;2014年
,本文编号:2132721
本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/2132721.html