多波束成像声纳阵列稀疏化技术研究
[Abstract]:By sampling a large transducer array at the receiving end, the multi-beam imaging sonar can form a uniform and dense receiving beam through digital beamforming in a certain range of angles, so that the two-dimensional images of underwater targets can be obtained in real time. It is widely used in marine resources development and underwater search and rescue. However, large-scale transducer array brings about the increase of hardware complexity and cost, volume and power consumption of sonar system. Array sparsity is one of the effective ways to solve the above problems. Most of the existing sparse array designs are for single beam cases with few constraints. But the sparse array design of imaging sonar is not well solved. Therefore, it is of great theoretical significance and practical value to study the sparse array technique for multi-beam cases. The main research contents and results are as follows: (1) the array sparsity method based on Farrow structure multi-beam forming is studied in order to obtain a set of sparse weighting coefficient vectors to achieve the sparse location of the array elements. With the Farrow structure pointing adjustable beamformer and the multi-beamforming method based on sub-aperture rotation, 538 beamforming in the range of 90-degree visual field can be realized with only one set of weighting coefficients. A convex optimization model of array sparsity based on Farrow structure is constructed. The simulation and measured data show that the proposed method can obtain satisfactory solutions according to the threshold set. But the sparse rate of the array is not high. (2) A multi-beam array sparse algorithm based on intelligent optimization and convex optimization is studied. The sparse method of single beam array based on particle swarm optimization is extended to multi-beam array. The simulation results show that the algorithm has poor optimization ability and too much computation. A hybrid algorithm based on improved binary wind-driven optimization and convex optimization is proposed. The position and weighted vector of the array are optimized until the sparse array with minimum number of elements satisfying the performance of the pattern is obtained. The simulated and measured data show that the algorithm can obtain the optimal array weight and array layout to meet the performance requirements. Both optimization performance and computational efficiency have been greatly improved compared with the existing methods. (3) Multi-beam array sparse method based on column space correlation is studied. Considering that the received signals of array elements have great correlation, the column space correlation model of the receiving array guidance matrix is studied, and the projection error is introduced. Based on the projection errors of each column in the subspace of other Zhang Cheng columns, the relative redundancy of the array elements is determined, and a detailed algorithm flow is designed. Compared with the previous two methods, the sparse method based on column space can improve the performance and achieve the optimal array sparsity ratio at the same performance of the main sidelobe. In summary, the three sparse methods presented in this paper have their own advantages and disadvantages. The method of array sparsity based on Farrow structure requires less weighting coefficient and less computation, but the width of the main lobe of the beam is wider and the sparse rate of the array is not high. The performance of the latter two multi-beam array sparse methods is better than that of the multi-beam forming method based on Farrow structure, but the computation time is increased. By comparison, the multi-beam array sparse method based on column space correlation is optimal.
【学位授予单位】:南京航空航天大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TB565.1
【参考文献】
相关期刊论文 前10条
1 任作琳;田雨波;孙菲艳;;具有强开发能力的风驱动优化算法[J];计算机科学;2016年01期
2 王庆喜;郭晓波;;基于莱维飞行的粒子群优化算法[J];计算机应用研究;2016年09期
3 杨晓超;刘宏伟;王勇;纠博;;最小化旁瓣的MIMO雷达发射方向图优化算法[J];电子与信息学报;2012年12期
4 辛渊博;侯宏;陈志菲;陈涛;;遗传算法用于波达方向估计的圆阵稀疏优化[J];计算机仿真;2011年03期
5 陈莉;贾育秦;毕有明;陈宏军;;基于BP神经网络数控机床热误差建模的研究[J];机电工程技术;2011年01期
6 赵钢;王冬梅;黄俊友;吴杰;;多波束与单波束测深技术在水下工程中的应用比较研究[J];长江科学院院报;2010年02期
7 李颂文;;声透镜波束形成技术[J];声学技术;2007年05期
8 彭祥龙;;用遗传算法优化任意稀布率的平面阵列[J];电讯技术;2007年03期
9 朱维庆;刘晓东;张东升;张方生;秦高林;廖诤;方常乐;;高分辨率测深侧扫声纳[J];海洋技术;2005年04期
10 孙大军,田坦;合成孔径声呐技术研究(综述)[J];哈尔滨工程大学学报;2000年01期
相关博士学位论文 前4条
1 韩业强;实时相控阵三维成像声纳的波束形成及阵列稀疏技术研究[D];浙江大学;2013年
2 阳凯;阵列方向图综合与自适应波束形成技术研究[D];电子科技大学;2013年
3 吴菊;声透镜成像关键技术研究[D];哈尔滨工程大学;2013年
4 彭建辉;基于凸优化理论的自适应波束形成技术[D];中国科学技术大学;2008年
相关硕士学位论文 前9条
1 董tt;基于实测数据的多波束成像声纳系统优化与实现[D];南京航空航天大学;2014年
2 王雪磊;基于稀疏特征的高分辨声呐成像[D];西安电子科技大学;2014年
3 杨成;多波束成像声纳系统硬件平台设计与实现[D];南京航空航天大学;2013年
4 王静娇;成像声纳数据实时传输与显示控制技术研究[D];南京航空航天大学;2013年
5 杨斌;一种改进的粒子群算法在阵列天线设计中的应用[D];清华大学;2011年
6 赵帅;单波束扫描成像声呐的数据处理及其DSP实现[D];中国海洋大学;2010年
7 张凯;基于子空间分析的高光谱图像目标检测技术研究[D];杭州电子科技大学;2010年
8 陈浩;阵列信号处理相关技术研究[D];南京理工大学;2008年
9 袁连喜;水下智能机器人声视觉成像可视化技术研究[D];哈尔滨工程大学;2002年
,本文编号:2140029
本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/2140029.html