当前位置:主页 > 管理论文 > 工程管理论文 >

钢轨缺陷的超声导波检测研究

发布时间:2018-07-28 17:00
【摘要】:铁路运输尤其是现在高速发展的高速铁路线路,成为了我国交通运输最具代表性的产业,已经有许多新型的无损检测技术广泛使用在了寻找钢轨的缺陷上面。研究钢轨缺陷无损检测的实时监测系统对铁路运输产业的可持续性发展和安全平稳运营是非常重要的。超声导波在固体结构中传播,不断的和结构边界相互作用,并伴随着干涉叠加以及纵波和横波间的模态转换等现象,也就造成了超声导波在弹性介质结构中通常出现多样性的传播模态。超声导波在波导介质的传播过程中,绝大多数传播模态都具有频率色散特性,钢轨作为具有非常好的声导特性的固体波导弹性介质,可以运用技术分析钢轨中超声导波的频散特性来达到对应力和断轨等诸如此类的钢轨状态检测。 首先介绍了超声导波主要是研究内容以及超声导波无损检测技术的四个模态特性的分析、模态的选择、模态的控制和模态的分解部分。还从理论层面介绍了使用半解析有限元的方法可以计算得出各向同性均质自由弹性结构中超声导波的频散特性曲线。有限元方法的基本原理以及对于不同物理性质和数学模型的问题,还对有限元方法数学建模求解计算的基本步骤作了一定的简单介绍。然后介绍了超声导波无损检测技术的情况和大致的检测过程。然后根据弹性波在弹性介质结构中传播的运动方程,应变位移关系和应力应变关系,计算出超声波在无限大各向异性弹性介质结构中传播的控制方程。同时介绍了一些弹性介质结构中的刚度矩阵的表达方程。最后简单计算推出了超声导波在各向同性的平板中的色散方程,还描述了超声导波在平板中传播的频散曲线和导波结构。 接着提出了一种通用的方法,应用半解析有限元方法推导出在一般弹性介质结构任意截面中超声导波的传播模型。从过去的提出的半解析有限元方法模型中推导出在阻尼存在的粘弹性结构中,,计算求解出能量速度曲线和衰减曲线。 最后通过有限元方法对超声导波在钢轨中传播模态进行了分析,对ANSYS瞬态动力学分析基本理论做了简要描述。通过使用有限元方法首先对平板弹性介质结构中进行建模,然后扩展到对钢轨中超声导波传播模态研究的有限元建模。
[Abstract]:Railway transportation, especially the high-speed railway line, has become the most representative industry in China, and many new nondestructive testing techniques have been widely used to find the defects of rail. It is very important for the sustainable development and safe and stable operation of railway transportation industry to study the real-time monitoring system of rail defect nondestructive detection. Ultrasonic guided waves propagate in solid structures, interact with structural boundaries, and are accompanied by interference superposition and modal conversion between longitudinal and shear waves. Therefore, the ultrasonic guided waves usually appear a variety of modes of propagation in elastic media structures. In the process of ultrasonic guided wave propagation in waveguide medium, most of the propagation modes have frequency dispersion characteristics. Rail is a solid waveguide elastic medium with very good acoustic conductivity. The technique can be used to analyze the dispersion characteristics of ultrasonic guided waves in the rail to detect the stress and the rail breaking. Firstly, the research content of ultrasonic guided wave and the analysis of four modal characteristics of ultrasonic guided wave nondestructive testing technology, modal selection, modal control and modal decomposition are introduced. The dispersion curves of ultrasonic guided waves in isotropic homogeneous free elastic structures can be calculated by using semi-analytical finite element method. The basic principle of the finite element method and the basic steps of solving the mathematical model of the finite element method for different physical properties and mathematical models are also briefly introduced. Then the ultrasonic guided wave nondestructive testing technology and the approximate detection process are introduced. Then the governing equations of ultrasonic wave propagation in infinite anisotropic elastic media structures are calculated according to the equations of motion strain displacement and stress-strain relations of elastic waves propagating in elastic media structures. At the same time, the expression equations of stiffness matrix in some elastic media structures are introduced. Finally, the dispersion equation of ultrasonic guided wave in isotropic plate is derived, and the dispersion curve and structure of ultrasonic guided wave propagating in the plate are also described. Then a general method is proposed, and the propagation model of ultrasonic guided waves in arbitrary sections of elastic media structures is derived by using semi-analytical finite element method. In the viscoelastic structure with damping, the energy velocity curve and the attenuation curve are calculated from the semi-analytical finite element method model proposed in the past. Finally, the mode of ultrasonic guided wave propagation in rail is analyzed by finite element method, and the basic theory of ANSYS transient dynamics analysis is briefly described. The finite element method is used to model the elastic medium structure of a flat plate, and then the finite element method is extended to the finite element modeling of the ultrasonic guided wave propagation mode in the rail.
【学位授予单位】:武汉纺织大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:U216.3;TB559

【参考文献】

相关期刊论文 前10条

1 吴斌,王智,金山,焦敬品,何存富;用于激励超声导波的任意波形发生器[J];北京工业大学学报;2002年04期

2 孙继华;韩晓华;赵洪贤;董欣;孟令华;李庆卓;黄绪萍;杜石岩;;钢中夹杂对超声波传播影响的有限元模拟[J];德州学院学报;2009年02期

3 肖开丰;宋文爱;;二维有限元超声波动方程的研究[J];国外电子测量技术;2008年05期

4 许西宁;余祖俊;朱力强;;图解法求解Lamb波频散方程[J];电子测量与仪器学报;2012年11期

5 马永光,刘良玉,王璋奇,吴勃;超声波无损检测的计算机模拟[J];华北电力大学学报;2002年03期

6 施泽华;周海鸣;;声弹性法及其应用[J];河海大学学报;1990年02期

7 肖开丰;宋文爱;;超声波在各向同性固体中传播的数值模拟[J];计算机仿真;2008年09期

8 田铭兴;陈云峰;赵斌;闵永智;;实时断轨检测方法综述[J];兰州交通大学学报;2011年01期

9 刘蕊,王寅观,陈振宇,李勇攀;利用临界折射纵波检测钢轨应力[J];声学技术;2004年04期

10 何存富;李颖;王秀彦;吴斌;李隆涛;;基于小波变换及Wigner-Ville变换方法的超声导波信号分析[J];实验力学;2005年04期



本文编号:2150959

资料下载
论文发表

本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/2150959.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户d8a91***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com