新型矢量水听器研究
[Abstract]:The vector hydrophone, as a new type of underwater acoustic transducer, can provide the velocity information of the underwater acoustic field, which has the advantage unparalleled by the conventional hydrophone. Therefore, it can make the researchers understand the sound field more comprehensively and promote the study of underwater acoustic physical characteristics. Especially, the superior low frequency cosine directivity can make it in the small aperture. The vector hydrophone is divided into two main categories in accordance with the working principle: one is the inertial sensor, that is, the usual same vibrating column and the spherical vector hydrophone. As an inertial sensor, the structure is mainly composed of the suspension system and the sensor itself. A non inertia sensor, including a pressure differential vector hydrophone and a multimode hydrophone (a pressure differential vector hydrophone from the sensor mode itself). As a non inertial sensor, the suspension system is not needed. The index of sexual energy is determined by the sensor itself. In this paper, a rigid fixed column type vector hydrophone is proposed in this paper. The idea is to integrate the suspension system with the same vibrating column vector water hearing device and adopt a circular ring type rubber projectile in the structure. The surface contact mode between the spring and the same vibrating column type vector hydrophone; using the circular ring type rubber spring shear movement to make the underwater acoustic wave achieve the same vibration in the mode of motion. Firstly, the theory of receiving the same vibrating column type vector hydrophone usually does not consider the effect of the suspension system on the index of the sex energy, and the equivalent circuit method is used. The acoustic theory and the vibration system are fused simultaneously in the equivalent circuit. By establishing the equivalent circuit of a vectorial hydrophone with a suspension system, the sensitivity expression of the hydrophone in the water is derived. The influence of the hydrophone density, the internal sensitive element, the suspension system on the working characteristics of the water Lister is simulated and analyzed. The method (based on ANSYS software) is used to study the factors affecting the horizontal shear stiffness of the ring type rubber spring. Using the 2 parameter Mooney-Rivlen model, the effect of the material parameters and the size parameters on the shear stiffness is analyzed, and the influence of the different pressure values on the shear stiffness under the prestress conditions is calculated. Two kinds of vector hydrophone samples with different sensitive elements are built. The same vibration column vector hydrophone with a piezoelectric accelerometer is 500Hz-2500Hz with a sensitivity of no less than -190dB (@1kHz), and a built-in moving coil speed meter with a vibrating column vectorer, its working frequency is 500Hz-1600Hz, and the sensitivity is a -190dB. same mode vector hydrophone. The sexual suspension system is usually only a part of the vibration system and does not directly affect the sound wave. In this paper, a kind of vector hydrophone with the same vibrational sphere with elastic inclusions is studied. The sound waves are moved by the elastic inclusions to the internal spherical vector hydrophone, and then the velocity signal of the sound mass point is picked up. The vector water hearing is introduced in this paper. The establishment process of the physical model, through the theoretical and simulation analysis, determines the influence of the related parameters on the performance of the hydrophone. Finally, the water Lister sample is developed and the lake is tested on the lake. The working frequency is 63Hz-1600Hz and the sensitivity is -183dB (@1kH). The pressure differential vector hydrophone is usually only suitable for high frequency section. A new type of sandwich structure pressure differential vector hydrophone is proposed in this paper. This paper uses the bending vibration mode of the rod to work at a lower frequency. This paper studies how to use the ANSYS software to analyze the underwater acoustic characteristics of the pressure differential vector hydrophone. First, the pressure difference vector of the sandwich structure is used by the ANSYS finite element software. The modal analysis of the hydrophone is carried out in the air, and the influence of material parameters on the minimum vibration mode of the hydrophone is studied. Secondly, the water harmonic response is analyzed in water and the sensitivity of the hydrophone is simulated by the reciprocity principle. Through the sound field analysis, the directivity of the hydrophone is obtained. Finally, the pressure difference vector of the new sandwich structure is studied. The hydrophone is assembled and fabricated, and the sandwich structure pressure differential vector hydrophone sample is produced. The electroacoustic performance test is carried out in a silencer. The test results show that it is basically consistent with the theoretical results.
【学位授予单位】:哈尔滨工程大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TB565.1
【相似文献】
相关期刊论文 前10条
1 陈洪娟;杨士莪;王智元;洪连进;;中频小型矢量水听器设计研究[J];应用声学;2006年06期
2 陈丽洁;杨士莪;;矢量水听器测试模型及拾振条件探讨[J];应用声学;2006年06期
3 乔慧;刘俊;张斌珍;张文栋;熊继军;薛晨阳;;一种新型压阻式硅微仿生矢量水听器的设计[J];传感技术学报;2008年02期
4 彭汉书;李风华;;由矢量水听器阵列反演浅海地声参数[J];声学技术;2008年02期
5 贾志富;;全面感知水声信息的新传感器技术——矢量水听器及其应用[J];物理;2009年03期
6 关凌纲;张国军;薛晨阳;蓝伟军;;三维同振柱型矢量水听器的制作[J];舰船科学技术;2009年09期
7 徐余;孙好广;;矢量水听器振子实现研究[J];声学与电子工程;2010年02期
8 王立;刘文怡;张国军;;仿生矢量水听器水下监测记录装置[J];计算机测量与控制;2011年01期
9 洪连进;杨德森;时胜国;邢世文;;中频三轴向矢量水听器的研究[J];振动与冲击;2011年03期
10 牛嗣亮;张振宇;胡永明;倪明;;单矢量水听器的姿态修正测向问题探讨[J];国防科技大学学报;2011年06期
相关会议论文 前10条
1 陈洪娟;张虎;赵勰;;三维同振球形矢量水听器的小型化研究[A];2009年全国水声学学术交流暨水声学分会换届改选会议论文集[C];2009年
2 孙梅;李风华;;一种矢量水听器俯仰姿态校正方法研究[A];中国声学学会2009年青年学术会议[CYCA’09]论文集[C];2009年
3 许欣然;葛辉良;孟洪;白琳琅;郑震宇;;矢量水听器声性能的理论建模分析[A];2009年中国东西部声学学术交流会论文集[C];2009年
4 高源;杜选民;;单个矢量水听器空间处理增益分析[A];2004年全国水声学学术会议论文集[C];2004年
5 熊水东;罗洪;胡永明;倪明;孟洲;;三维光纤矢量水听器实验研究[A];中国声学学会2005年青年学术会议[CYCA'05]论文集[C];2005年
6 胡永明;倪明;孟洲;熊水东;;光纤矢量水听器研究进展[A];中国声学学会2006年全国声学学术会议论文集[C];2006年
7 马莉;;基于矢量水听器的目标定向技术研究[A];湖北省声学学会成立二十周年纪念文集[C];2006年
8 李风华;彭汉书;;矢量水听器阵列反演浅海地声参数[A];2007年全国水声学学术会议论文集[C];2007年
9 费腾;;矢量水听器校准装置[A];2005年全国水声学学术会议论文集[C];2005年
10 陈洪娟;赵鹏涛;;10~100Hz矢量水听器校准系统研究[A];2008年全国声学学术会议论文集[C];2008年
相关重要报纸文章 前1条
1 唐晓伟 记者 姜雪松;冰城声呐技术装备造就“水下千里眼”[N];哈尔滨日报;2013年
相关博士学位论文 前10条
1 刘爽;新型矢量水听器研究[D];哈尔滨工程大学;2016年
2 陈丽洁;微型矢量水听器研究[D];哈尔滨工程大学;2006年
3 莫世奇;矢量水听器的数据融合研究[D];哈尔滨工程大学;2007年
4 张国军;纤毛式MEMS矢量水听器研究[D];西北工业大学;2015年
5 李思纯;基于矢量水听器的目标特征提取与识别技术研究[D];哈尔滨工程大学;2008年
6 吕文磊;压差式光纤矢量水听器基元与测试技术研究[D];哈尔滨工程大学;2009年
7 吕云飞;甚低频矢量水听器潜标探测系统关键技术研究[D];哈尔滨工程大学;2010年
8 时胜国;矢量水听器及其在平台上的应用研究[D];哈尔滨工程大学;2007年
9 吴艳群;拖线阵用光纤矢量水听器关键技术研究[D];国防科学技术大学;2011年
10 陈宇中;开环光纤陀螺性能改进及其在光纤矢量水听器姿态测量上的应用研究[D];国防科学技术大学;2011年
相关硕士学位论文 前10条
1 武甜甜;三维压电矢量水听器小型化的研究[D];哈尔滨工程大学;2009年
2 邢世文;三维矢量水听器及其成阵研究[D];哈尔滨工程大学;2009年
3 李金亮;三轴向电容式矢量水听器的研究[D];哈尔滨工程大学;2009年
4 袁林;矢量水听器智能化技术研究[D];哈尔滨工程大学;2008年
5 赵鹏涛;10-100Hz矢量水听器研制及其测试方法研究[D];哈尔滨工程大学;2008年
6 赵勰;三维矢量水听器及其低频校准方法的研究[D];哈尔滨工程大学;2009年
7 杨松涛;深水矢量水听器的研制[D];哈尔滨工程大学;2010年
8 邢建军;矢量水听器测向技术的研究[D];西北工业大学;2005年
9 周益明;二维同振柱形矢量水听器的研究[D];哈尔滨工程大学;2006年
10 吴祥兴;超低频矢量水听器技术研究[D];哈尔滨工程大学;2005年
,本文编号:2170813
本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/2170813.html