基于高分辨率遥感图像的车辆分类识别研究
[Abstract]:With the development of remote sensing technology and the improvement of satellite spatial resolution, the research of vehicle recognition based on high-resolution remote sensing image has made some achievements, and a relatively complete vehicle recognition process has been established. Based on the vehicle recognition process of high resolution remote sensing image, the method used in vehicle recognition is improved in order to obtain higher vehicle recognition accuracy. The main contents of this paper are as follows: (1) in the aspect of image preprocessing, sobel edge filtering method is used to process images. Compared with other image processing methods, such as linear transformation, which have been used in vehicle recognition research, Sobel edge filtering can better highlight vehicle edge features. It is beneficial to the subsequent vehicle recognition. (2) the optimal scale of vehicle segmentation in high-resolution remote sensing images is studied. By analyzing the characteristics of vehicles at different segmentation scales, this paper puts forward the method of determining the optimal scale based on vehicle area, which is based on the area of vehicle as the basis for determining the optimal scale of vehicle segmentation. When the total area of vehicle reaches the maximum value, the corresponding segmentation scale is the optimal scale of vehicle segmentation. This method is more suitable than the RMAS method based on spectral heterogeneity. (3) the characteristics of vehicles in high-resolution remote sensing images are analyzed in detail and the corresponding description of feature classes is established. In this paper, two classification methods, threshold classification and fuzzy rule, are introduced briefly. Combined with the characteristics of the two classification methods, a multi-feature threshold-fuzzy rule double classifier method is constructed. It is used to improve the recognition accuracy of vehicles with different luminance. (4) the vehicle recognition results are evaluated and analyzed by using various kinds of high-resolution remote sensing images and the corresponding evaluation factors. The results were 96% accuracy, 89% integrity and 86% overall quality. Compared with the recognition results of brightly colored vehicles at the same resolution, the recognition method in this paper has higher recognition accuracy than the previous research, and there are few errors and omissions. The results show that the method and classification method of optimal vehicle segmentation scale proposed in this paper have good universality and feasibility.
【学位授予单位】:北京交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP751
【参考文献】
相关期刊论文 前10条
1 谷正气;李健;张勇;夏威;罗伦;;一种高分辨率可见光遥感影像中车辆目标检测方法[J];测绘通报;2015年01期
2 胡文亮;赵萍;董张玉;;一种改进的遥感影像面向对象最优分割尺度计算模型[J];地理与地理信息科学;2010年06期
3 丰伟;吴焕荣;王岩;赵峰;;基于航空影像的树冠提取方法研究[J];山东林业科技;2010年04期
4 吴亮;胡云安;;遥感图像自动道路提取方法综述[J];自动化学报;2010年07期
5 郑宏;胡学敏;;高分辨率卫星影像车辆检测的抗体网络[J];遥感学报;2009年05期
6 谢勤岚;;图像降噪的自适应高斯平滑滤波器[J];计算机工程与应用;2009年16期
7 李禹;计科峰;吴永辉;粟毅;;高分辨率SAR图像车辆目标几何特征提取方法[J];系统工程与电子技术;2009年01期
8 曾建航;魏萌;王靳辉;尚怡君;;基于知识的遥感影像模糊分类方法[J];测绘科学技术学报;2008年03期
9 唐伟;赵书河;王培法;;面向对象的高空间分辨率遥感影像道路信息的提取[J];地球信息科学;2008年02期
10 曾嘉亮;;基于边缘检测的图像锐化算法[J];现代电子技术;2006年12期
相关博士学位论文 前3条
1 阳树洪;灰度图像阈值分割的自适应和快速算法研究[D];重庆大学;2014年
2 李艳梅;图像增强的相关技术及应用研究[D];电子科技大学;2013年
3 黄慧萍;面向对象影像分析中的尺度问题研究[D];中国科学院研究生院(遥感应用研究所);2003年
相关硕士学位论文 前10条
1 刘超超;基于光学卫星影像的车辆识别和速度估算研究[D];北京交通大学;2015年
2 张晓利;卫星影像中城市道路区域车辆目标提取方法研究[D];北京交通大学;2015年
3 谢小杰;基于资源三号影像的植被信息提取方法及应用[D];南京林业大学;2014年
4 王昌满;面向对象的遥感影像旱季水田利用信息提取[D];昆明理工大学;2014年
5 郭甜甜;卫星图像中提取车辆目标的尺度问题研究[D];北京交通大学;2013年
6 李龙飞;卫星图像中车辆目标提取方法优化与精度评价[D];北京交通大学;2012年
7 孟育红;基于对象影像分析技术提取日光温室遥感信息方法研究[D];兰州大学;2012年
8 郭杜杜;基于高分辨率卫星影像的城市道路阴影区域车辆信息提取研究[D];北京交通大学;2011年
9 孙奇飞;人脸疲劳状态的识别与研究[D];广东工业大学;2011年
10 索明亮;卫星图像中运动车辆探测和速度提取研究[D];北京交通大学;2011年
,本文编号:2188635
本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/2188635.html