当前位置:主页 > 管理论文 > 工程管理论文 >

单声源声镊子研究

发布时间:2018-10-09 08:11
【摘要】:随着现代科技的快速发展,高频超声在科研和工业领域,如超声医疗检测、超声无损检测等领域的应用日益成熟。利用声辐射力实现生物医学领域实现细胞筛选、药物输送作用,以及在工业设计领域实现微粒子的非接触操控等,是目前医学超声研究热点之一,声波对球粒子的声辐射力研究对新型声镊子的设计具有重要的现实意义。本论文利用声散射理论方法对声波作用于球形粒子的声辐射力的特性进行了研究。第一章的主要内容是回顾了声辐射力相关的理论研究和实际应用历史,介绍了近期有关声辐射力的研究进展,并概述了本文研究工作的主要内容,接着介绍基于球散射理论的声辐射力计算方法。第二章主要介绍基于点声源的球散射理论下中空聚焦换能器对轴向球粒子的声辐射力。在未考虑声衰减前提下,仿真结果证明中空聚焦换能器在近场区域产生了声辐射拉力区,声辐射拉力区域与内、外角以及完全硬介质球半径大小有关。该结论可能对未来单声源声镊子的实现具有理论指导意义。第三章主要介绍基于球声散射理论下环状换能器中轴线上的球所受声辐射力的模型。未考虑介质中声传播损耗的前提下,计算结果发现环状换能器轴向的近场区域存在声辐射拉力区域,该区域与纳米量级球的大小材质、距离、内外半径的大小等相关,本章重点讨论声辐射拉力区与上述因素的关系。研究结果对声镊子的研究制作具有指导作用。第四章主要利用有限级数展开的方法,通过将贝塞尔高斯波进行球函数展开计算了波束因子,推导出贝塞尔高斯波对轴向上粒子的声辐射力,拓展了贝塞尔波的声辐射力研究。为未来利用单向非衍射波实现声捕获提供理论基础。本文建立各种不同声场中声辐射力模型,计算了球形粒子在不同单声源中受到的声辐射力,对单声源声镊子的设计制作,实现工业和医学上的无损操控有着重要的理论指导作用
[Abstract]:With the rapid development of modern science and technology, the application of high frequency ultrasound in the fields of scientific research and industry, such as ultrasonic medical testing, ultrasonic nondestructive testing and so on, has become increasingly mature. The use of acoustic radiation to realize cell screening, drug delivery, and non-contact manipulation of microparticles in the field of industrial design is one of the hot spots in the field of medical ultrasound. The study of acoustic radiation force on ball particles is of great practical significance for the design of new type tweezers. In this paper, the acoustic radiation force of spherical particles is studied by means of acoustic scattering theory. The main contents of the first chapter are to review the theoretical research and practical application history of acoustic radiation force, introduce the recent research progress of acoustic radiation force, and summarize the main contents of the research work in this paper. Then the calculation method of acoustic radiation force based on sphere scattering theory is introduced. In the second chapter, the acoustic radiation force of the hollow focusing transducer on the axial spherical particles based on the point sound source theory is introduced. Without considering the sound attenuation, the simulation results show that the hollow focusing transducer produces the sound radiative force region in the near field, which is related to the size of the inner, outer angle and the radius of the complete hard medium sphere. This conclusion may be of theoretical significance for the realization of mono-source tweezers in the future. In chapter 3, the model of sound radiation force on the axis of ring transducer based on the theory of spherical sound scattering is introduced. Without considering the sound propagation loss in the medium, the calculation results show that there is a region of acoustic radiation force in the axial region of the annular transducer, which is related to the material size, distance and radius of the nanoscale ball, etc. This chapter focuses on the relationship between the acoustic radiation tension region and the above factors. The results can be used to guide the research and manufacture of tweezers. In chapter 4, by using the method of finite series expansion, the beam-factor is calculated by using the spherical function expansion of Bessel Goss wave, and the acoustic radiation force of Bessel Goss wave on the axial particle is deduced, which extends the study of acoustic radiation force of Bessel wave. It provides a theoretical basis for acoustic capture using unidirectional nondiffractive waves in the future. In this paper, various sound radiation force models in different sound fields are established, and the sound radiation forces of spherical particles in different mono sound sources are calculated. It has important theoretical guidance for the design and manufacture of single sound source tweezers and the realization of nondestructive manipulation in industry and medicine.
【学位授予单位】:南京大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TB552


本文编号:2258609

资料下载
论文发表

本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/2258609.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户13105***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com