基于自适应协同优化算法的流程工业生产调度研究
[Abstract]:Production scheduling, as the core of production management in process enterprises, plays an important role in enhancing the comprehensive competitiveness and economic benefits of enterprises. Production scheduling in process industry is a typical NP-hard optimization problem with complexity, multi-constraint and multi-objective. Therefore, an efficient and feasible optimization algorithm is needed to solve the problem. Collaborative optimization (Collaborative Optimization,CO) is a new multidisciplinary optimization design algorithm, which decomposes the complex model into several parts, reduces the complexity of the system and reduces the difficulty of solving the problem. It has high application value in production scheduling field of process industry. The main contents of this paper are as follows: (1) an adaptive cooperative optimization algorithm (Self-adaptive Collaborative Optimization,SCO) is proposed to solve the problem of the lack of the ability to optimize the objective function at the subject level. Firstly, the cooperative inconsistency is introduced at the system level, and the dynamic relaxation factor is improved to make the optimal design point converge rapidly to the extremum point. Secondly, the consistency objective function and the subdiscipline optimal objective function are added as the subdiscipline objective function with dynamic weight at the subject level, and the consistency is considered and the subdiscipline independence is taken into account. Finally, the two-stage optimization process is used to eliminate the dynamic relaxation factor and the subdiscipline optimal objective function in the late iteration to prevent the convergence process from oscillating. The simulation results show that the SCO algorithm is insensitive to the initial point, and the optimization efficiency is improved significantly. (2) aiming at the complex production scheduling problem in the process industry, the simulation results show that the algorithm is not sensitive to the initial point, and the optimization efficiency is improved significantly. A discrete time based MILP (Mixed Integer Linear Programming) model for process industry was established and applied to the seven days production scheduling of saccharified brewing workshop in beer enterprises. SCO algorithm is used to decompose the model into seven sub-disciplines of single-day production scheduling in saccharification workshop and one sub-discipline of production scheduling in brewing workshop. At the same time, genetic algorithm is used to solve the SCO algorithm at the subject and system levels. Through the simulation and analysis of this case, the rationality of the model and the feasibility and efficiency of SCO algorithm used to solve the production scheduling problem in the process industry are verified.
【学位授予单位】:杭州电子科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TB497
【参考文献】
相关期刊论文 前10条
1 赵浩;荣冈;冯毅萍;;集成炼油企业生产与能量系统的生产计划优化[J];化工学报;2015年01期
2 姚壮乐;陈超核;;改进协同优化算法在船舶概念设计中的应用(英文)[J];船舶力学;2014年12期
3 纪爱敏;殷旭;;基于自适应松弛因子的协同优化方法[J];计算机集成制造系统;2014年07期
4 唐聃;黄健;;流水车间调度问题的启发式算法研究[J];电子科技大学学报;2013年06期
5 魏锋涛;宋俐;李言;石坤;;改进的多学科协同优化方法[J];计算机集成制造系统;2013年09期
6 李冬琴;杨永祥;陈智同;;一种改进的协同优化算法及其应用[J];计算机工程与科学;2013年01期
7 吴文瑞;黄海;吴蓓蓓;;遥感卫星总体参数设计的建模与协同优化[J];北京航空航天大学学报;2012年10期
8 王柏琳;李铁克;张春生;张文学;孙彬;;基于动态约束满足的考虑连铸机故障的炼钢连铸调度算法[J];计算机集成制造系统;2011年10期
9 王文伟;李邦国;陈潇凯;;基于协同优化方法的汽车正面抗撞性优化设计[J];北京理工大学学报;2011年09期
10 王超;刘阶萍;常伟涛;赵军;;不确定条件下的作业车间生产调度综述[J];装备制造技术;2011年04期
相关博士学位论文 前1条
1 粟华;飞行器高拟真度多学科设计优化技术研究[D];西北工业大学;2014年
相关硕士学位论文 前7条
1 马力;基于粒子群算法的多产品批处理生产调度问题研究[D];江西理工大学;2015年
2 李宁;基于仿真的生产调度问题研究[D];兰州理工大学;2014年
3 高一;基于混合遗传算法的作业车间多目标优化调度及系统开发研究[D];东华大学;2014年
4 张顺;基于改进协同免疫算法的Flow Shop调度问题研究[D];华东理工大学;2013年
5 王波;协同优化技术在多学科复杂系统设计中的应用[D];西安理工大学;2010年
6 谢五峰;MES生产调度系统的研究[D];北京交通大学;2007年
7 李滨虎;流程工业生产调度仿真方法研究[D];山东大学;2006年
,本文编号:2323418
本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/2323418.html