基于光谱解混和目标优化的高光谱图像亚像元定位研究
[Abstract]:Hyperspectral images contain rich spectral information and are widely used in many fields and become one of the most important sources of information for Earth observation. However, due to the limitation of its imaging principle and the manufacturing technology of hyperspectral imager, the spatial resolution of hyperspectral images is generally low, and mixed pixels are widely used in images. For applications such as land cover mapping, shoreline extraction, change detection and landscape index estimation, spatial details of mixed pixel hinterland are extremely important, if the traditional hard classification method is used, It is incorrect to classify the mixed pixels in the image as any kind of feature. Sub-pixel location is an effective method to make up for the above deficiencies. Therefore, sub-pixel positioning technology is of great significance. Based on the spectral de-mixing of hyperspectral images and intelligent optimization algorithm, sub-pixel localization of hyperspectral images is studied in this paper. The main work of this paper includes: (1) briefly describing the background and practical significance of this study, consulting the relevant literature at home and abroad, and analyzing and summarizing it. This paper provides an important scientific reference and theoretical support for the improved sub-pixel localization method. (2) the related theories of spectral unmixing are introduced systematically, including the definition of spectral unmixing and its mathematical model. Then the typical method of spectral unmixing under pure pixel assumption is introduced. Finally, the typical method of spectral unmixing based on pure pixel assumption is briefly introduced. (3) the general framework of sub-pixel localization algorithm based on spectral deconvolution optimization is presented. The minimum circumference of the connected region of the image is determined as the objective function, and three different methods of calculating the circumference of the image are introduced, and the optimization algorithm suitable for sub-pixel location is further analyzed. In order to reduce the time complexity of the algorithm, and based on the spatial distribution of objects in the base area, a new iterative strategy of target optimization is proposed. Local analysis is used to replace global analysis. (4) the basic principles of genetic algorithm and binary particle swarm optimization algorithm are described respectively, and the specific applications of the two algorithms in sub-pixel localization, including the process of population representation and updating, are discussed. Combined with three different methods of calculating objective function, The application results of two optimization algorithms in sub-pixel location are compared. (5) the reason that the minimum circumference based on chain code length can not guarantee the optimal result is obtained by analyzing the existence of special cases in connected region. In this paper, we propose to modify the perimeter of isolated regions and consider the number of connected regions to construct cost functions. Finally, binary particle swarm optimization (BPSO) is used to realize sub-pixel localization. (6) the work done in this paper is summarized. The future development of hyperspectral image sub-pixel localization is prospected.
【学位授予单位】:杭州电子科技大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP751
【相似文献】
相关期刊论文 前10条
1 陈跃红;葛咏;;两种基于空间相关性的遥感亚像元分类制图方法对比分析[J];遥感技术与应用;2012年05期
2 黄慧娟;禹晶;肖创柏;孙卫东;;基于局部连续性与全局相似性的光谱保持型亚像元映射[J];自动化学报;2014年08期
3 车双良,汶德胜;像元间隔对亚像元动态成像系统MTF的影响[J];光电工程;2002年02期
4 张旭,沈景鹏,杨国光;亚像元分析方法在空间坐标一致性测量中的应用[J];光学仪器;2005年01期
5 任武;葛咏;;遥感影像亚像元制图方法研究进展综述[J];遥感技术与应用;2011年01期
6 凌峰;吴胜军;肖飞;吴柯;李晓冬;;遥感影像亚像元定位研究综述[J];中国图象图形学报;2011年08期
7 赵烈烽;张平;徐之海;;基于序列图像的亚像元成像技术研究[J];仪器仪表学报;2006年S3期
8 王群明;王立国;刘丹凤;王正艳;;基于最小二乘支持向量机的线性特征地物亚像元定位(英文)[J];红外与激光工程;2012年06期
9 车双良,汶德胜,李轶,张兴社;亚像元动态成像技术中系统的调制传递函数[J];应用光学;2002年03期
10 杨怀栋;陈科新;何庆声;金国藩;;亚像元光谱图重建算法[J];光谱学与光谱分析;2009年12期
相关会议论文 前4条
1 兰硕;刘明川;;基于亚像元成像技术的折轴三反射光学系统设计[A];第十届全国光电技术学术交流会论文集[C];2012年
2 冯蜀青;肖建设;校瑞香;苏文将;吴素霞;;基于EOS/MODIS的亚像元火情监测方法研究[A];农业生态与卫星遥感应用技术学术交流会论文摘要集[C];2006年
3 寻丽娜;方勇华;;约束能量最小化算法在亚像元目标检测中的应用[A];中国光学学会2006年学术大会论文摘要集[C];2006年
4 李兆霖;姚新程;郭荭莲;程丙英;张道中;;CCD亚像元位移分辨率测量及其在光镊系统中的应用[A];第三届全国现代生物物理技术学术讨论会论文摘要汇编[C];2000年
相关博士学位论文 前2条
1 许雄;顾及地物空间特性的遥感影像亚像元定位理论与方法研究[D];武汉大学;2013年
2 张洪恩;青藏高原中分辩率亚像元雪填图算法研究[D];中国科学院研究生院(遥感应用研究所);2004年
相关硕士学位论文 前10条
1 张颖;基于MODIS资料的积雪亚像元制图算法研究[D];兰州大学;2015年
2 王继红;线阵CCD亚像元超分辨率重建方法研究[D];中国科学院研究生院(西安光学精密机械研究所);2015年
3 杭丹维;南疆覆膜农田亚像元制图及热环境效应定量测算[D];浙江大学;2016年
4 范明阳;基于光谱解混和目标优化的高光谱图像亚像元定位研究[D];杭州电子科技大学;2016年
5 谭志敏;遥感影像亚像元定位算法研究[D];华中科技大学;2013年
6 王群明;遥感图像亚像元定位及相关技术研究[D];哈尔滨工程大学;2012年
7 李晓俊;蓝藻水华遥感提取的空间尺度效应及亚像元定位研究[D];南京师范大学;2014年
8 黄紫晗;高光谱影像亚像元目标检测方法研究[D];中国科学院研究生院(西安光学精密机械研究所);2014年
9 沈银河;高光谱图像亚像元级目标检测的非线性方法研究[D];杭州电子科技大学;2011年
10 王雪松;基于FPGA的智能视频信号处理技术研究[D];长春理工大学;2010年
,本文编号:2325544
本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/2325544.html