当前位置:主页 > 管理论文 > 工程管理论文 >

电磁式主动吸振器的设计及其性能研究

发布时间:2018-12-08 07:49
【摘要】:随着动力装置朝小型化、轻量化和高转速化方向发展,其振动与噪声问题越来越突出。振动与噪声的存在不仅影响动力装置的工作效率,同时还影响其使用寿命。传统的被动减振方法由于不能应对外激励频率的变化,无法在全频率范围内对振动实施有效控制。为解决被动减振方法存在的不足,主动控制方法已成为当前减振研究的热点。主动吸振器是实施主动控制方法的执行机构,其性能和控制方法对减振效果有直接影响。本文主要围绕电磁式主动吸振器中电磁作动器的结构设计、主动控制算法以及特性试验等方面开展研究。论文首先根据主动吸振器的工作原理,将电磁式主动吸振器振动系统简化为有阻尼受迫振动的单自由度系统,并建立了所对应的动力学模型。由MATLAB仿真得出,当频率比远大于1时,振动系统所需的作用力与电磁作动器产生的电磁力相等。确定了电磁作动器各组成部分的材料。通过电磁场仿真分析,优化了磁路结构,分析了永磁铁厚度与气隙大小对电磁力输出的影响,确定了电磁作动器整体结构方案,同时采用有限元分析方法对其运动部件进行了强度校核。其次,研究了PID控制算法的参数整定原则,分析了加速度误差与误差变化率对参数整定的影响。通过对系统动力学模型进行分析,获得了系统的传递函数,以被控系统的加速度级作为控制目标,设计了两输入三输出的模糊控制器,并与PID控制相结合设计出模糊-PID控制器,用MATLAB/Simulink模块对模糊-PID控制进行了仿真分析。结果表明在模糊-PID控制下,系统的超调量为0.3mm,调整时间为80ms,上升时间为20ms。最后,对电磁作动器进行了试验研究,结果表明弹簧片刚度为54N/mm,符合初始设计要求。完成电磁作动器动态力测试试验,验证作动力与电流电压频率变化之间的关系。完成试验台架的组装,结合控制算法进行台架主动控制试验。结果表明,电磁式主动吸振器能够在模糊-PID控制策略下振动加速度级平均下降21.1d B。
[Abstract]:With the development of power plant towards miniaturization, lightweight and high speed, the problems of vibration and noise become more and more prominent. The existence of vibration and noise not only affects the working efficiency of power plant, but also affects its service life. The traditional passive vibration reduction method can not control the vibration effectively in the whole frequency range because it can not respond to the change of external excitation frequency. In order to solve the deficiency of passive vibration reduction method, active control method has become a hot spot in the research of vibration reduction. Active vibration absorber is the executive mechanism of active control method, and its performance and control method have direct influence on the effect of vibration reduction. This paper focuses on the structure design, active control algorithm and characteristic test of the electromagnetic actuator in the electromagnetic active vibration absorber. Firstly, according to the working principle of active vibration absorber, the vibration system of electromagnetic active vibration absorber is simplified to a single degree of freedom system with damping forced vibration, and the corresponding dynamic model is established. The MATLAB simulation shows that when the frequency ratio is far greater than 1, the force required for the vibration system is equal to the electromagnetic force generated by the electromagnetic actuator. The material of each component of electromagnetic actuator is determined. Through the electromagnetic field simulation analysis, the magnetic circuit structure is optimized, the influence of the permanent magnet thickness and the air gap size on the electromagnetic force output is analyzed, and the whole structure scheme of the electromagnetic actuator is determined. At the same time, the finite element analysis method is used to check the strength of its moving parts. Secondly, the parameter tuning principle of PID control algorithm is studied, and the effects of acceleration error and error rate on parameter tuning are analyzed. By analyzing the dynamic model of the system, the transfer function of the system is obtained, and the fuzzy controller with two inputs and three outputs is designed with the acceleration level of the controlled system as the control target. The fuzzy PID controller is designed in combination with PID control, and the fuzzy PID control is simulated by MATLAB/Simulink module. The results show that under the fuzzy PID control, the overshoot is 0.3 mm, the adjustment time is 80 Ms, and the rising time is 20 Ms. Finally, the electromagnetic actuator is experimentally studied. The results show that the stiffness of the spring plate is 54 N / mm, which meets the initial design requirements. The dynamic force test of the electromagnetic actuator is completed to verify the relationship between the dynamic force and the change of current, voltage and frequency. Complete the assembly of the test bench and carry out the active control test with the control algorithm. The results show that the electromagnetic active vibration absorber can decrease the vibration acceleration level by 21.1 dB under the fuzzy PID control strategy.
【学位授予单位】:湘潭大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TB535.1

【参考文献】

相关期刊论文 前10条

1 倪圆;何琳;帅长庚;李彦;;磁悬浮主被动混合隔振器静稳定性分析[J];船舶力学;2015年10期

2 王文初;尹志勇;陈科;杨森林;;新型三向管路动力吸振器设计方法研究[J];船舶力学;2015年Z1期

3 孔小兵;刘向杰;;永磁同步电机高效非线性模型预测控制[J];自动化学报;2014年09期

4 黄鼎友;张金文;陈少梁;;电磁作动器的参数设计及仿真分析[J];重庆交通大学学报(自然科学版);2012年05期

5 陈自力;马傲玲;游晓良;陈昌萍;;主动式动力吸振器的振动控制研究[J];厦门理工学院学报;2012年03期

6 肖和业;盛美萍;雷烨;;连续参数型吸振器吸振分析及优化[J];振动.测试与诊断;2012年03期

7 来飞;黄超群;;采用电磁作动器的车辆主动悬架的研究[J];汽车工程;2012年02期

8 李勇;顾彦;靳春梅;;汽车动力吸振器优化设计[J];噪声与振动控制;2011年06期

9 邓兆祥;来飞;;车辆主动悬架用电磁直线作动器的研究[J];机械工程学报;2011年14期

10 王述彦;师宇;冯忠绪;;基于模糊PID控制器的控制方法研究[J];机械科学与技术;2011年01期

相关会议论文 前1条

1 贾静波;王亚斌;李修峰;;电磁作动器安全性与可靠性仿真分析[A];北京力学会第20届学术年会论文集[C];2014年

相关硕士学位论文 前6条

1 彭一峰;基于模糊PID控制理论的振动主动控制研究[D];大连理工大学;2013年

2 张定;基于电磁作动器的柔性体振动主动控制仿真及试验研究[D];南京航空航天大学;2013年

3 袁万朋;弹性基础上的主动隔振技术研究[D];哈尔滨工程大学;2012年

4 崔世明;阻尼可调式电磁吸振器的研究[D];哈尔滨工程大学;2012年

5 王曦;内燃机整机振动主动控制中模糊控制方法的研究[D];江苏大学;2003年

6 杨东利;超磁致伸缩执行器及其在主动振动控制中的应用研究[D];浙江大学;2002年



本文编号:2367981

资料下载
论文发表

本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/2367981.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户9e4f0***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com