双吊点启闭机液压系统动态特性研究
[Abstract]:No matter it is a water conservancy project, a shipping lock, a power station, or a flood control station, it is necessary to use the gate, and the opening and closing of the gate must use a special mechanical device, the hoist. Compared with the large bulky hoisting hoist of the same capacity, the hydraulic hoist has much lighter weight, and the hydraulic structure is simple, which can save a lot of investment, especially when the number of orifices is more than that of the hydraulic hoist. Because of the smooth running, the system can realize stepless speed regulation conveniently, can realize the overload protection automatically, easy to connect with the computer, and realize the intelligent control, etc., the hydraulic hoist has shown its obvious superiority. However, as the main development direction of gate hoist, hydraulic hoist also faces many problems that need to be solved urgently, such as system dynamic performance is not ideal, system synchronization accuracy is not high, balance loop stability is poor, and so on. Therefore, starting from the problem, this paper adopts a new synchronous loop structure to complete the design of the control strategy and improve the dynamic performance of the system and the stability of the balance loop, which provides a reference for the future development of the hoist hydraulic system. Firstly, the working principle, research status and main problems of hydraulic system of hoist are briefly introduced, and the research background and significance of this paper are expounded. In chapter 2, the working principle of A11VO proportional variable pump and FD type unidirectional throttle balancing valve is described in detail. Based on the transfer function method, the mathematical models of the two key components are established, the block diagram is obtained, and the open loop transfer function is derived. The influence of the main structural parameters of the key components on the dynamic characteristics of the system is analyzed. According to the derived open loop gain, a feasible method to improve the stability of the system is proposed. In chapter 3, the hydraulic system simulation software AMESim is introduced briefly. The simulation models of A11VO proportional variable pump and FD type unidirectional throttle balancing valve are established by using HCD library. The accuracy of the model is verified, and the methods to suppress the pressure shock at the outlet of the proportional pump, to stabilize the pressure, to improve the stability of the system and to speed up the adjusting time of the balance loop system are obtained. In chapter 4, the function of PID control algorithm and the method of parameter tuning are introduced in detail. The AMESim simulation model of hoist hydraulic system is built. The PID controller is designed based on the system model. After the introduction of PID controller in the system, the simulation is focused on whether the proportional pump controlled synchronous cylinder can complete the more accurate displacement following under the step bias load and the step speed of 1 cylinder. Observe the control effect and dynamic performance of PID controller. In chapter 5, the working principle of feedforward compensation controller is introduced. In the case of load disturbance, the control effect of PID controller is not very ideal. The disturbance caused by load change is eliminated by feedforward compensation control strategy. The transfer function block diagram of synchronous loop module of hoist hydraulic system is established, feedforward compensation link is introduced into the system, and feedforward compensation controller is designed. The simulation results show that the performance of feedforward PID control is significantly improved than that of simple PID control under the same bias force interference.
【学位授予单位】:兰州理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP273;TH137
【参考文献】
相关期刊论文 前10条
1 张氢;孙峰;郑敬峰;秦仙蓉;孙远韬;;基于AMESim与ADAMS的轮式装载机联合仿真[J];机床与液压;2016年05期
2 刘二东;郑建明;黄建强;贺梦婕;;直驱泵控电液位置伺服系统模糊PID控制仿真与实验研究[J];液压与气动;2015年05期
3 宁辰校;张戌社;罗占兴;;液压同步回路及液压启闭机同步控制研究[J];机床与液压;2013年14期
4 杨国来;惠喜强;徐双用;周淑琴;;基于AMESim的塔吊液压顶升系统螺纹插装式平衡阀动态特性分析[J];液压与气动;2013年03期
5 张小宇;;基于AMESim的液压控制系统建模及仿真[J];煤矿机械;2011年02期
6 赵晓平;陈完成;;几种液压平衡回路的性能分析[J];石家庄职业技术学院学报;2009年06期
7 梁晓娟;;基于AMESim三位四通阀动态仿真研究[J];煤矿机电;2009年05期
8 江晓明;;液压冲击的物理本质、产生原因及其改善措施[J];科技创新导报;2009年10期
9 王炎;胡军科;杨波;;负载敏感泵的动态特性分析与仿真研究[J];现代制造工程;2008年12期
10 张立强,杨国来,卢X;基于自适应模糊PID的径向柱塞变量泵电液伺服控制[J];兰州理工大学学报;2005年04期
相关博士学位论文 前1条
1 周育才;800MN巨型液压机同步系统精良控制技术研究[D];中南大学;2012年
相关硕士学位论文 前10条
1 邓龙;螺纹插装式平衡阀在平衡回路中稳定性研究[D];兰州理工大学;2016年
2 陈明明;超越负载工况下平衡阀稳定性研究[D];吉林大学;2015年
3 宁赛;电液比例泵控马达速度控制策略研究[D];北京理工大学;2015年
4 季清华;掘进机用插装式平衡阀动态仿真[D];太原理工大学;2013年
5 惠喜强;螺纹插装式平衡阀动态特性和内流场的研究[D];兰州理工大学;2013年
6 李坤;新型负载保持阀性能研究与仿真分析[D];太原科技大学;2012年
7 梁承杰;工程臂架液压驱动同步系统设计与控制策略[D];湖南师范大学;2011年
8 梁宏喜;液压平衡阀动态特性的数值解析[D];兰州理工大学;2011年
9 詹磊;新型双吊点液压启闭机的设计与研究[D];昆明理工大学;2011年
10 张恒;负载敏感平衡阀的可视化分析及结构优化[D];太原理工大学;2010年
,本文编号:2378716
本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/2378716.html