基于深度学习的遥感图像检索方法研究
[Abstract]:The characteristics of mass, diversity and complexity of remote sensing image data put forward higher requirements for the speed and accuracy of remote sensing image retrieval. Content-based remote sensing image retrieval method is the focus of research in recent years. The feature extraction method is the key to the effect of remote sensing image retrieval. Most of the traditional feature extraction methods are to extract the underlying visual features of remote sensing images for retrieval, which has the disadvantage that the underlying features are difficult to express the semantic information of the image. In this paper, a method of remote sensing image retrieval based on deep learning is proposed. Through the training of neural network, the mapping relationship between image bottom features and high-level semantics is established. Two different depth learning methods are used for remote sensing image retrieval. (1) A semi-supervised remote sensing image retrieval method based on depth learning is proposed. Then the feature dictionary is obtained by feature learning on a large number of unlabeled remote sensing images based on sparse automatic coding method and based on the idea of convolution neural network. Using the trained feature dictionary to convolution and pool the remote sensing image, the feature map of each image is obtained. Then the feature map is used to train the Softmax classifier, and finally to classify the retrieval image, the distance between the features is calculated in the same category, and then the remote sensing image retrieval is realized. The experimental results show that this method can effectively improve the speed and accuracy of remote sensing image retrieval. (2) A remote sensing image retrieval method based on convolution neural network is proposed. It includes CNN feature extraction network layer and Softmax classification layer. The high level semantic feature of remote sensing image is extracted by convolution neural network. The generalization ability of remote sensing image is improved by introducing dropout layer, and the retrieval accuracy of remote sensing image is further improved. Methods in this paper (1) the retrieval accuracy in remote sensing image retrieval experiment is 90.6 and the retrieval time is 7.1844 s, and the retrieval accuracy in remote sensing image retrieval experiment is 98.8. The retrieval time is 9.138s, and this method also has the following shortcomings: when the image classification error is to be retrieved, the retrieval accuracy is low.
【学位授予单位】:中国科学院大学(中国科学院遥感与数字地球研究所)
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP751
【参考文献】
相关期刊论文 前10条
1 姚相坤;万里红;霍宏;方涛;;基于多结构卷积神经网络的高分遥感影像飞机目标检测[J];计算机工程;2017年01期
2 张毅;张彦峰;;基于光谱-空间特征的遥感影像水体提取方法[J];甘肃科技;2016年11期
3 李德仁;张良培;夏桂松;;遥感大数据自动分析与数据挖掘[J];测绘学报;2014年12期
4 王杰;贾育衡;赵昕;;基于稀疏自编码器的烟叶成熟度分类[J];烟草科技;2014年09期
5 段宝彬;韩立新;谢进;;基于堆叠稀疏自编码的模糊C-均值聚类算法[J];计算机工程与应用;2015年04期
6 高常鑫;桑农;;基于深度学习的高分辨率遥感影像目标检测[J];测绘通报;2014年S1期
7 冯霞;秦昆;崔卫红;陈一祥;李向辉;;高分辨率遥感影像目标形状特征多尺度描述与识别[J];遥感学报;2014年01期
8 程学旗;王元卓;靳小龙;;网络大数据计算技术与应用综述[J];科研信息化技术与应用;2013年06期
9 黄劲;孙洋;徐浩然;;稀疏编码(Sparse coding)在图像检索中的应用[J];数字技术与应用;2013年11期
10 李德仁;童庆禧;李荣兴;龚健雅;张良培;;高分辨率对地观测的若干前沿科学问题[J];中国科学:地球科学;2012年06期
相关博士学位论文 前4条
1 吴伟文;基于计算机视觉的目标图像检索相关技术的研究[D];华南理工大学;2012年
2 齐恒;基于内容图像检索的关键技术研究[D];大连理工大学;2012年
3 杜根远;海量遥感图像内容检索关键技术研究[D];成都理工大学;2011年
4 程起敏;基于内容的遥感影像库检索关键技术研究[D];中国科学院研究生院(遥感应用研究所);2004年
相关硕士学位论文 前4条
1 罗世操;基于深度学习的图像语义提取与图像检索技术研究[D];东华大学;2016年
2 王长明;遥感影像检索技术的研究与实现[D];太原理工大学;2011年
3 张金华;基于矩特征傅里叶描述的目标形状识别[D];上海交通大学;2009年
4 陈文锋;基于纹理特征的遥感图像检索技术研究[D];解放军信息工程大学;2007年
,本文编号:2400909
本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/2400909.html