基于压电分流阵列的带隙调控及振动抑制
[Abstract]:The same piezoelectric sheet is periodically adhered to the surface of the controlled structure and the same shunt circuit is connected to each of the piezoelectric plates to form an array structure. The array structure is called a piezoelectric shunt array, and a composite structure in which a piezoelectric shunt array is mounted is referred to as a piezoelectric shunt array structure. in addition, that piezoelectric shunt array has the advantages of small additional quality, convenient installation and easy use and the like with the traditional piezoelectric shunt damping technology, and has potential application prospect in the field of vibration reduction and noise reduction of the light flexible structure. In this paper, based on the vibration and noise control of light flexible structure in space engineering, a two-dimensional and two-dimensional piezoelectric shunt array is used to solve the problems of theoretical foundation and technology application. Based on the combination of the software simulation and the experiment test, the system and in-depth theoretical research and engineering application exploration of the piezoelectric shunt array are carried out. The main innovation and the research results are as follows: the new modeling and calculation method of the piezoelectric shunt array structure is proposed. The precise integral model of one-dimensional piezoelectric shunt array is proposed for the first time, and the error introduced by the traditional long-wave approximate model is analyzed. The method for calculating the band gap of a new two-dimensional piezoelectric shunt array structure is developed, which comprises the following steps of: solving the problem of the transcendental eigenvalue problem or the wave field transformation to realize the linearization of the characteristic value problem by a numerical method, and completing the solution of the propagation constant in the arbitrary direction of the two-dimensional piezoelectric shunt array structure. The results of the above algorithm provide a powerful tool for the theoretical analysis and design application of the piezoelectric shunt array. The band gap characteristics and mechanism of the piezoelectric shunt array structure are studied. The band gap and the band gap forming mechanism of the structure of the piezoelectric shunt array are studied in depth for the first time. The physical mechanism of the band gap and the influence of the circuit parameters on the propagation constant in the band gap are included in the three different types of shunt circuits of the resistance circuit, the resonant circuit and the negative capacitance circuit. the resistance can form the damping dissipation in the shunt circuit, not only has the influence on the band gap, but also generates a certain attenuation effect in the pass band. the inductance and the capacitance of the piezoelectric plate form a resonance unit, and the local resonance band gap can be caused in the structure of the piezoelectric shunt array. The introduction of the negative capacitance improves the electromechanical coupling coefficient of the piezoelectric shunt system, and can effectively increase the band gap width and the band gap attenuation. Through the study of the gap character and mechanism of the structure of the piezoelectric shunt array, the key band gap influence factors and the influence law are effectively revealed, and the theoretical basis for the design of the piezoelectric shunt array is provided. and the optimal design of the piezoelectric shunt array is realized. By using the previous algorithm tools and the theoretical analysis results, the optimal design of the piezoelectric shunt array is realized by combining the appropriate optimization algorithm, including both the circuit parameters and the geometric parameters. The circuit parameters are mainly of resistance, inductance and negative capacitance depending on the type of the shunt circuit. The proper selection of circuit parameters is not only the key to the regulation of the position of the band gap, but also the effective means to increase the band gap width and the attenuation in the band gap. The geometrical parameters are mainly the size of the piezoelectric plate and the lattice constant, the size of the piezoelectric plate is directly related to the lattice filling rate and the electromechanical coupling efficiency of the shunt circuit, and the lattice constant is also an important parameter which influences the band gap characteristic. The application of the piezoelectric shunt array in the suppression of satellite micro-vibration is explored. The piezoelectric shunt array has the advantages of small additional quality, convenient installation, simple and easy to use and wide frequency control, and is especially suitable for vibration and noise control of light flexible structure in space engineering. A two-dimensional piezoelectric shunt array is designed on the satellite cabin, and the effect of the shunt array on the micro-vibration transfer of the cabin is analyzed. The feasibility of the application of the piezoelectric shunt array in the suppression of the micro-vibration of the satellite is also discussed. In this paper, the modeling and algorithm of the piezoelectric shunt array, the mechanism of the band gap, the band gap characteristic and the optimization design of the piezoelectric shunt array are studied, and the possibility of the application of the piezoelectric shunt array in the suppression of the micro-vibration of the satellite is also studied. The research results of this paper not only solve the large number of key theoretical and technical problems in the theory study of the piezoelectric shunt array, but also make a useful exploration for its practical application in space engineering.
【学位授予单位】:国防科学技术大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:TB535
【相似文献】
相关期刊论文 前10条
1 杜设亮,傅建中,张云,陈子辰;仿生主动构件压电变换器研究[J];中国机械工程;2001年05期
2 蒋建平;李东旭;;压电层合板高阶计算模型[J];振动与冲击;2008年04期
3 孙浩;杨智春;李凯翔;解江;李斌;张玲凌;;压电分流阻尼控制精密机械结构振动的研究[J];振动与冲击;2008年06期
4 丁大成,牛勇;压电陶瓷复合振子的电声效率与振子压电片位置关系的实验研究[J];声学学报;1983年06期
5 林西强,任钧国;含压电片层合板的静变形控制[J];固体力学学报;1998年04期
6 林西强,任钧国;含压电片梁的静变形控制[J];应用力学学报;1998年04期
7 李书光,胡松青,张军;圆管状压电片低频接收电压灵敏度的一种简化分析法[J];青岛大学学报(自然科学版);2002年01期
8 杨智春,孙浩,崔海涛;压电分流阻尼控制悬臂梁振动的参数优化分析[J];机械科学与技术;2005年06期
9 刘登云;陈洪涛;杨志刚;程光明;;压电叠堆泵的初步研究[J];液压与气动;2007年03期
10 吴磊;王建国;;压电片位置和大小对板振动控制的影响[J];合肥工业大学学报(自然科学版);2007年08期
相关会议论文 前10条
1 常道庆;刘碧龙;李晓东;田静;;智能吸声控制中压电片位置的选取[A];中国声学学会2007年青年学术会议论文集(上)[C];2007年
2 匡友弟;王卓;李国清;陈传尧;;节式压电梁的电阻抗模拟和实验研究[A];第二届全国压电和声波理论及器件技术研讨会摘要集[C];2006年
3 尹潇然;李国清;徐巍;缪幸圆;;有限元法与阻抗法分析压电智能梁的传感与激励[A];Proceedings of the 2010 Symposium on Piezoelectricity,Acoustic Waves and Device Applications[C];2010年
4 杨亚东;王军;冯国旭;程小全;;压电悬臂梁的压电片位置及主动控制研究[A];经济发展方式转变与自主创新——第十二届中国科学技术协会年会(第二卷)[C];2010年
5 徐巍;李国清;尹潇然;缪幸圆;;有限元法与阻抗法分析压电激励下的弹性薄板[A];Proceedings of the 2010 Symposium on Piezoelectricity,Acoustic Waves and Device Applications[C];2010年
6 段吉栋;何远航;;压电蜂窝结构振动控制研究[A];北京力学会第20届学术年会论文集[C];2014年
7 袁学帅;陈富军;姚林泉;;压电层合结构的子域配点法[A];Proceedings of the 2010 Symposium on Piezoelectricity,Acoustic Waves and Device Applications[C];2010年
8 吴鹏;曹东兴;;一种新型压电俘能器的动力学建模及振动特性分析[A];北京力学会第20届学术年会论文集[C];2014年
9 裘进浩;季宏丽;刘建;朱孔军;;压电功能器件及其在智能结构中的应用[A];第三届全国压电和声波理论及器件技术研讨会论文集[C];2008年
10 张立;郭定文;王秋蓉;;压电降噪的多物理场建模分析方法[A];运输噪声的预测与控制——2009全国环境声学学术会议论文集[C];2009年
相关重要报纸文章 前2条
1 浙江 张培君;压电式电子门铃[N];电子报;2007年
2 台湾省台北市 何X山;用压电式蜂鸣器产生 直流电压的实验[N];电子报;2004年
相关博士学位论文 前10条
1 马天兵;压电智能结构振动主动控制关键技术研究[D];南京航空航天大学;2014年
2 郭抗抗;双稳态压电悬臂梁俘能器的动态响应及发电性能研究[D];天津大学;2015年
3 庞帅;风致压电振动能量收集与存储技术研究[D];北京林业大学;2016年
4 徐振龙;磁力耦合压电电磁复合俘能器发电特性研究[D];哈尔滨工业大学;2016年
5 魏胜;基于碰撞致上变频原理的压电能量收集技术研究[D];哈尔滨工业大学;2015年
6 陈奕声;路面车致变形的压电俘能机理研究[D];浙江大学;2016年
7 陈圣兵;基于压电分流阵列的带隙调控及振动抑制[D];国防科学技术大学;2014年
8 胡洪平;低频压电俘能器研究[D];华中科技大学;2006年
9 王红艳;梁结构压电及压电电磁复合俘能器模型的建立与实验研究[D];哈尔滨工业大学;2013年
10 闫震;提高压电振动发电机发电能力的理论及关键技术研究[D];华北电力大学;2012年
相关硕士学位论文 前10条
1 任佳琦;基于谐振式悬臂梁的压电—电磁复合俘能技术研究[D];哈尔滨工业大学;2011年
2 崔兴可;微尺度压电振动发电机构动力学分析与微电源设计[D];山东大学;2015年
3 陈丹鹏;薄壁板气动弹性非线性振动的压电俘能研究[D];哈尔滨工业大学;2015年
4 冉令坤;压电曲壳结构动力形状控制及优化设计[D];大连理工大学;2015年
5 刘杉;振动发电与压电发电混合式能量捕获装置的研究[D];河北工业大学;2015年
6 王大宇;基于移动终端的复合梁结构压电发电技术研究[D];电子科技大学;2014年
7 贾元辉;埋置压电装置沥青混凝土制备与性能研究[D];河北工业大学;2015年
8 张蕴馨;压电非线性俘能电路及其在道路状态监测中的应用[D];北京交通大学;2016年
9 张锦;基于压电纤维复合材料的柔性结构振动半主动控制研究[D];南京航空航天大学;2015年
10 邓文;基于压电阻抗模型参数识别的结构健康监测研究[D];南京航空航天大学;2015年
,本文编号:2403567
本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/2403567.html