同类平行机批调度问题研究
[Abstract]:Production scheduling problem is a kind of combinatorial optimization problem with important research value. It widely exists in various industries of modern production. The batch scheduling problem, which is extended from the classical scheduling problem, has become one of the hot issues in the field of production scheduling because of its extensive practical value and better theoretical support. With the rise of new production mode and its wide application in enterprises, the production environment of enterprises is extended from traditional single-machine production environment to complex multi-machine production environment. With the rapid development of information technology, the Internet of things (IoT) technology has been widely used in the manufacturing process of enterprises, which brings both opportunities and challenges to the production scheduling of enterprises. As an important part of the new generation of information technology, the application of Internet of things technology in the field of production scheduling can realize the identification of production scheduling objects and obtain the state information and location information of production scheduling objects and machines. Whether the decision-makers can make full use of this information in the fierce market competition to make efficient and reliable scheduling strategy and realize the intelligent optimal scheduling process will become the key to the enterprises to be invincible in the fierce competition market. Based on the information provided by the Internet of things (IoT), the batch scheduling problem of two special cases in which the processing equipment is in the same parallel machine environment is studied systematically in this paper around the process of parallel batch machining in semiconductor manufacturing. In order to minimize the manufacturing span, the conditions of different transportation time and different capacity of processing equipment are considered respectively. The main work of the thesis is as follows: (1) the mathematical model of the same parallel machine batch scheduling problem considering the transportation time is established with the goal of minimizing the manufacturing span. Based on the analysis of the properties of the problem, a heuristic algorithm and a local search strategy are proposed. Combined with the advantages of discrete particle swarm optimization and genetic algorithm, a hybrid DPSO-GA algorithm is proposed to solve the problem. The proposed hybrid DPSO-GA algorithm is compared with the related algorithms through simulation experiments to verify the effectiveness of the proposed algorithm. The results show that the proposed hybrid DPSO-GA algorithm can efficiently solve the problem in a reasonable time. (2) the batch scheduling problem in the same parallel machining environment with different capacity is studied. The mathematical model of the batch scheduling problem is established by minimizing the manufacturing span, and a heuristic algorithm is proposed to generate the initial solution of the genetic algorithm. Then an improved genetic algorithm with local search strategy is designed to solve the scheduling problem. Experimental results show that the improved genetic algorithm proposed in this paper can effectively solve the similar parallel machine batch scheduling problem with different capacity.
【学位授予单位】:合肥工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TB497
【相似文献】
相关期刊论文 前10条
1 张智聪;郑力;翁小华;;优化加权平均流程时间的平行机调度[J];现代制造工程;2007年09期
2 张智聪;郑力;翁小华;;基于增强学习的平行机调度研究[J];计算机集成制造系统;2007年01期
3 王成尧,汪定伟;有模机配合约束的平行机台调度方法[J];东北大学学报;1999年04期
4 蒋大奎;李波;;基于禁忌搜索的平行机多工厂供应链调度[J];中国机械工程;2012年06期
5 肖晶;张灿荣;郑力;;基于数学规划的平行机批量调度固定优化算法[J];清华大学学报(自然科学版);2012年04期
6 温燕;连续滚动生产作业安排中初始状态非平凡的P//C_(max)问题[J];烟台大学学报(自然科学与工程版);1998年03期
7 王天坤;;平行机调度问题的列生成方法研究[J];装备制造技术;2014年05期
8 冯琪;财玉华;;具有维修时间的两台平行机在线排序[J];河南科技大学学报(自然科学版);2011年06期
9 赵洪銮;韩国勇;;交货期窗口待定情况下的平行机排序问题[J];山东大学学报(工学版);2006年05期
10 霍录景;米洪海;;具有模糊交货期的平行机排序问题[J];科学技术与工程;2012年12期
相关会议论文 前1条
1 闻振卫;;一类平行机上的任务指派问题及其动态规划算法[A];中国运筹学会第九届学术交流会论文集[C];2008年
相关博士学位论文 前7条
1 刘珊珊;一些单机和平行机排序情形的研究[D];华东理工大学;2015年
2 陈友军;有运送协调性的最小化最大运送完成时间平行机排序[D];郑州大学;2016年
3 何杰;预防性维护下的混合型平行机调度问题研究[D];湖南大学;2016年
4 李松松;现代排序理论中的三类重要问题:博弈排序,分批可拒绝排序和在线排序[D];曲阜师范大学;2016年
5 程贞敏;平行机调度问题研究的若干结果[D];北京师范大学;2008年
6 蔡圣义;同类平行机在线半在线排序参数界的若干研究[D];浙江大学;2010年
7 何龙敏;一类平行机和批处理机组成的二阶段柔性流水作业问题[D];上海大学;2006年
相关硕士学位论文 前10条
1 郭平宁;工件带权重的平行机博弈排序问题[D];曲阜师范大学;2015年
2 李大伟;考虑延误的平行机可拒绝排序[D];曲阜师范大学;2015年
3 赵云;带等级平行机调度和MapReduce调度问题的算法研究[D];浙江理工大学;2016年
4 张家宝;考虑维护和可中断工件的混合型平行机调度问题研究[D];东华理工大学;2016年
5 蒋露;同类平行机批调度问题研究[D];合肥工业大学;2017年
6 洪文益;与平行机排序相关的几个组合问题研究[D];清华大学;2013年
7 李松松;在平行机博弈排序中的近似强纳什均衡问题[D];曲阜师范大学;2013年
8 王君丽;有加工权限平行机在线问题研究[D];浙江大学;2012年
9 财玉华;具有非交叉维修时间的平行机在线排序[D];郑州大学;2007年
10 莫祯贞;改进粒子群算法在模糊环境下平行机批调度问题中的应用研究[D];中国科学技术大学;2010年
,本文编号:2405464
本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/2405464.html